(本题满分13分)在一个盒子中,放有标号分别为,,的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,记.(1)求随机变量的最大值,并求事件“取得最大值”的概率;(2)求随机变量的分布列和数学期望.
某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?
某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数的分布列,并求出的期望与方差(保留两位小数).
(本小题满分13分)一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得分.
(Ⅰ)求拿4次至少得2分的概率; (Ⅱ)求拿4次所得分数的分布列和数学期望.
(本小题满分13分)
某种家用电器每台的销售利润与该电器的无故障使用时间 (单位:年)有关. 若,则销售利润为元;若,则销售利润为元;若,则销售利润为元.设每台该种电器的无故障使用时间,及这三种情况发生的概率分别为,,,叉知,是方程的两个根,且 (1)求,,的值; (2)记表示销售两台这种家用电器的销售利润总和,求的期望.
(本小题满分13分)某商场准备在暑假期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.(Ⅰ)试求选出的3种商品至少有一种日用商品的概率;(Ⅱ)商场对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高180元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等概率的.请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
(本小题满分13分)甲、乙、丙三人参加了一家公司招聘面试,甲表示只要面试合格就签约;乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响。(1)求至少有一人面试合格的概率;(2)求签约人数的分布列和数学期望;
(本小题满分13分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为 (I)求该小组中女生的人数; (II)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为,现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望。
(本小题满分13分)重庆、成都两个现代化城市之间有7条网线并联,这7条网线能通过的信息量分别为1,1,2,2,2,3,3(信息流量单位),现从中任选三条网线,设可通过的信息量为。若可通过的信息量≥6,则可保证信息通畅。(1)求线路信息通畅的概率;(2)求线路可通过的信息量的分布列和数学期望。
网
(本小题满分12分)中央电视台《同一首歌》大型演唱会曾在我市湄洲岛举行,之前甲、乙两人参加大会青年志愿者的选拔.已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题。规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选(两人独立答题)。(Ⅰ)求甲答对试题数ξ的概率分布(列表)及数学期望;(Ⅱ)求甲、乙两人至少有一人入选的概率(设甲、乙两人考试合格的事件分别为A、B).
甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”.
(1)求一个“单位射击组”为“单位进步组”的概率;(2)现要完成三个“单位射击组”,记出现“单位进步组”的次数为,求的分布列与数学期望.
有一个3×3×3的正方体, 它的六个面上均涂上颜色. 现将这个长方体锯成27个1×1×1的小正方体,从这些小正方体中随机地任取1个.
如每次从中任取一个小正方体,确定涂色的面数后,再放回,连续抽取6次,设恰好取到只有一个面涂有颜色的小正方体的次数为. 求的数学期望.
(本小题满分12分)某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
分别写在六张卡片上,放在一盒子中。 (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
试题篮
()