下面玩掷骰子放球的游戏:若掷出1点,甲盒中放入一球;若掷出2点或是3点,乙盒中放入一球;若掷出4点或5点或6点,丙盒中放入一球.设掷n次后,甲、乙、丙盒内的球数分别为x,y,z.
(1)当n=3时,求x、y、z成等差数列的概率;
(2)当n=6时,求x、y、z成等比数列的概率;
(3)设掷4次后,甲盒和乙盒中球的个数差的绝对值为ξ,求Eξ.
拋掷2颗骰子,所得点数之和记为ξ,那么ξ=4表示的随机试验结果是
( )
A.2颗都是4点 |
B.1颗是1点,另1颗是3点 |
C.2颗都是2点 |
D.1颗是1点,另1颗是3点,或者2颗都是2点 |
某项考试按科目、科目依次进行,只有当科目成绩合格时,才可继续参加科目的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目每次考试成绩合格的概率均为,科目每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,
求的数学期望.
(本小题满分12分)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(1)打了两局就停止比赛的概率;
(2)打满3局比赛还未停止的概率;
(3)比赛停止时已打局数的分布列与期望.
一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
已知某射手射击一次,击中目标的概率是.(1)求连续射击5次,恰有3次击中目标的概率;
(2)求连续射击5次,击中目标的次数X的数学期望和方差.
(3)假设连续2次未击中目标,则中止其射击,求恰好射击5次后,被中止射击的概率.(本题结果用分数表示即可).
在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的概率分布以及随机变量X数学期望;(本题结果用分数表示即可)
甲、乙两人各射击3次,甲每次击中目标的概率为,乙每次击中目标的概率为,
(1)记甲击中目标的次数为,求随机变量的概率分布表及数学期望;
(2)求乙至多击中目标2次的概率;
(3)求甲恰好比乙多击中目标2次的概率.
如图:用这3类不同的元件连接成系统,每个元件是否正常工作不受其他元件的影响,当元件正常工作和元件中至少有
一个正常工作时,系统就正常工作。如果元件
正常工作的概率分别为0.8、0.9、0.9则这个系统正常工作的概率为 .
试题篮
()