(本小题12分)
已知函数,且方程f(x)x12=0有两个实根x13,x24
(1)求函数f(x)的解析式
(2)设k>1,解关于x的不等式f(x)<
(本小题满分13分)
定义F(x,y)=(1+x)y,其中x,y∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3+ax2+bx+1)),其图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x0∈[1,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当x,y∈N,且x<y时,求证:F(x,y)>F(y,x).
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
已知函数;.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以3为上界的有界函数,求实数的取值范围;
(3)若,函数在上的上界是,求的取值范围.
(本小题满分14分)
已知函数;.
(1)当时,求函数f(x)在上的值域;
(2)若对任意,总有成立,求实数的取值范围;
(3)若(为常数),且对任意,总有成立,求M的取值范围.
(本题满分16分,第1小题5分,第2小题6分,第3小题5分)
已知函数,其中为常数,且
(1)若是奇函数,求的取值集合A;
(2)(理)当时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B;
(文)当时,求的反函数;
(3)(理)对于问题(1)(2)中的A、B,当时,不等式恒成立,求的取值范围。
(文)对于问题(1)中的A,当时,不等式恒成立,求的取值范围。
(本小题满分12分)
已知函数,.
(Ⅰ) 求函数在点(1,)处的切线方程;
(II) 若函数与在区间上均为增函数,求的取值范围;
(Ⅲ) 若方程有唯一解,试求实数的值.
已知函数将的图象向右平移两个单位,得到的图象.
(1)求函数的解析式;
(2) 若函数与函数的图象关于直线对称,求函数的解析式;
(3)设已知的最小值是,且求实数的取值范围.
试题篮
()