“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:
且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
二次函数y=ax2+bx+c的图象如图2所示,则下列结论①abc<0,②b2-4ac>0,③2a+b>0,④a+b+c<0,⑤ x=0为方程ax2+bx+c=-2的一个解,其中正确的有 ( )
A.2个 | B.3个 | C.4个 | D.5个 |
经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.
(1)函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
(3)若loga>1,则a的取值范围是(,1);
(4)若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是 .
已知函数f(x)=2x2﹣(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥﹣1恒成立,求实数a的最大值.
记函数(,,均为常数,且).
(1)若,(),求的值;
(2)若,时,函数在区间上的最大值为,求.
若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为 .
试题篮
()