优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余
高中数学

,二次函数的图象可能是

A. B.
C. D.
  • 题型:未知
  • 难度:未知

设函数为常数
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出 的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:

x
-3
-2
-1
0
1
2
3
4
y
6
0
-4
-6
-6
-4
0
6

 
则不等式ax2+bx+c>0的解集是_______________________.

  • 题型:未知
  • 难度:未知

一次函数f(x),满足f(f(x))=2x-1,求一次函数f(x)的解析式 。

  • 题型:未知
  • 难度:未知

若函数的定义域为[0,m],值域为,则m的取值范围是(  )

A.(0,4] B. C. D.
来源:
  • 题型:未知
  • 难度:未知

已知函数,若存在,使,则称是函数的一个不动点.设二次函数
(1)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(2)在(1)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.

  • 题型:未知
  • 难度:未知

,这三个函数中,当时,使恒成立的函数的个数是( )

A.0个 B.1个 C.2个 D.3个
  • 题型:未知
  • 难度:未知


(1)函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
(3)若loga>1,则a的取值范围是(,1);
(4)若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是      

  • 题型:未知
  • 难度:未知

已知函数f(x)=2x2﹣(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥﹣1恒成立,求实数a的最大值.

  • 题型:未知
  • 难度:未知

记函数均为常数,且).
(1)若),求的值;
(2)若时,函数在区间上的最大值为,求

  • 题型:未知
  • 难度:未知

(本题8分)设二次,不等式的解集是
(1)求
(2)当函数的定义域是时,求函数的最大值

  • 题型:未知
  • 难度:未知

已知二次函数满足条件,及
(1)求的解析式;
(2)求上的最值.

  • 题型:未知
  • 难度:未知

若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为    

  • 题型:未知
  • 难度:未知

函数.若的定义域为,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知二次函数对任意实数都满足,且.令
(1)求的表达式;
(2)设,证明:对任意,恒有

  • 题型:未知
  • 难度:未知

高中数学二次剩余试题