已知二次函数+的图象通过原点,对称轴为,.是的导函数,且 .
(1)求的表达式(含有字母);
(2)若数列满足,且,求数列的通项公式;
(3)在(2)条件下,若,,是否存在自然数,使得当时恒成立?若存在,求出最小的;若不存在,说明理由.
某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.
(1)用x和y表示z;
(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;
(3)若y=x,求使每月售货总金额有所增加的x值的范围.
已知函数,若存在,使,则称是函数的一个不动点.设二次函数.
(1)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(2)在(1)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
在自然条件下,某草原上野兔第n年年初的数量记为xn,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,
(1)证明:;
(2)用 xn表示xn+1;并证明草原上的野兔总数量恒小于m.
已知函数,.
(1)求的取值范围,使在闭区间上是单调函数;
(2)当时,函数的最大值是关于的函数.求;
(3)求实数的取值范围,使得对任意的,恒有成立.
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
试题篮
()