已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R).
(1)求证:两函数的图象交于不同的两点A、B;
(2)求线段AB在x轴上的射影A1B1的长的取值范围.
已知二次函数.
(1)若对任意、,且,都有,求证:关于的方程
有两个不相等的实数根且必有一个根属于;
(2)若关于的方程在上的根为,且,设函数的图象的对称轴方程为,求证:.
已知函数,其中.
(1)若,且的最大值为,最小值为,试求函数的最小值;
(2)若对任意实数,不等式恒成立,且存在使得成立,求的值;
(3)对于问(1)中的,若对任意的,恒有,求的取值范围.
(本小题满分14分)
已知函数.
(1)求函数的最小值;
(2)证明:对任意恒成立;
(3)对于函数图象上的不同两点,如果在函数图象上存在点(其中)使得点处的切线,则称直线存在“伴侣切线”.特别地,当时,又称直线存在 “中值伴侣切线”.试问:当时,对于函数图象上不同两点、,直线是否存在“中值伴侣切线”?证明你的结论.
已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=( )
A.a2-2a-16 |
B.a2+2a-16 |
C.-16 |
D.16 |
若在区间(-∞,1]上递减,则a的取值范围为( )
A.[1,2) |
B.[1,2] |
C.[1,+∞) |
D.[2,+∞) |
试题篮
()