已知.经计算得.
(Ⅰ)由上面数据,试猜想出一个一般性结论;
(Ⅱ)用数学归纳法证明你的猜想.
将全体正整数排成一个三角形数阵:
按照以上排列的规律,第行从左向右的第5个数为 .
用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为( )
A.2k+1 | B.2(2k+1) | C. | D. |
已知,,,...,若 ,( ), 则( )
A.a=5,b=24 | B.a="6," b=31 | C.a="5," b=42 | D.a="6," b=35 |
(本小题满分12分)已知数列{an}的第一项a1=5且Sn-1=an(n≥2,n∈N*),Sn为数列{an}的前n项和.
(1)求a2,a3,a4,并由此猜想an的表达式;
(2)用数学归纳法证明{an}的通项公式.
顺次列出的规律相同的个数中的前四个数依次是,,,,第个数是( )
A. | B. | C. | D. |
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n=k到n=k+1”左边需增乘的代数式为( )
A.2k+1 | B.2(2k+1) | C. | D. |
已知数列满足,
(1)求,,,;
(2)归纳猜想出通项公式 ,并且用数学归纳法证明;
(3)求证能被15整除.
试题篮
()