在数列{an}中,an=1-+-+…+-,则ak+1等于( )
A.ak+ | B.ak+- |
C.ak+ | D.ak+- |
将全体正整数排成一个三角形数阵:
按照以上排列的规律,第行从左向右的第5个数为 .
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得( )
A.n=6时该命题不成立 | B.n=6时该命题成立 |
C.n=4时该命题不成立 | D.n=4时该命题成立 |
观察下列等式
第一个式子
第二个式子
第三个式子
第四个式子
照此规律下去
(Ⅰ)写出第个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.
用数学归纳法证明1+++…+> (n∈N*)成立,其初始值至少应取( )
A.7 | B.8 | C.9 | D.10 |
用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为( )
A.2k+1 | B.2(2k+1) | C. | D. |
(本题14分)某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.
(Ⅰ)求出;
(Ⅱ)利用合情推理的“归纳推理思想”归纳出与的关系式,
(Ⅲ)根据你得到的关系式求的表达式.
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n=k到n=k+1”左边需增乘的代数式为( )
A.2k+1 | B.2(2k+1) | C. | D. |
已知数列满足,
(1)求,,,;
(2)归纳猜想出通项公式 ,并且用数学归纳法证明;
(3)求证能被15整除.
试题篮
()