优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法
高中数学

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

对大于或等于2的正整数的幂运算有如下分解方式:


根据上述分解规律,若的分解中最小的正整数是21,则___________.

  • 题型:未知
  • 难度:未知

(本小题满分13分)
已知数列{}满足,
(I)写出,并推测的表达式;
(II)用数学归纳法证明所得的结论。

  • 题型:未知
  • 难度:未知

用数学归纳法证明等式,第二步,“假设当时等式成立,则当时有”,其中                  .(请填化简后的结果)

  • 题型:未知
  • 难度:未知

已知数列满足,且
(Ⅰ)求的值;
(Ⅱ)猜想的通项公式,并用数学归纳法证明你的猜想。

  • 题型:未知
  • 难度:未知

用数学归纳法证明:)时,从“”时,左边应增添的代数式为_______________.

  • 题型:未知
  • 难度:未知

已知C为正实数,数列,确定.
(Ⅰ)对于一切的,证明:
(Ⅱ)若是满足的正实数,且,
证明:.

  • 题型:未知
  • 难度:未知

(本小题满分12分)用数学归纳法证明:当n为正整数时,13+23+33+……+n3

  • 题型:未知
  • 难度:未知

数列满足,前n项和
(1)写出
(2)猜出的表达式,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

用数学归纳法证明不等的过程中,由递推到时,不等式左边(    )

A.增加了一项
B.增加了一项
C.增加了,又减少了
D.增加了,又减少了
  • 题型:未知
  • 难度:未知


用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n=k到n=k+1”左边需增乘的代数式为(   )

A.2k+1 B.2(2k+1) C. D.
  • 题型:未知
  • 难度:未知

已知数列满足
(1)求
(2)归纳猜想出通项公式 ,并且用数学归纳法证明;
(3)求证能被15整除.

  • 题型:未知
  • 难度:未知

(满分12分)观察下列式子:
(Ⅰ)由此猜想一个一般性的结论,
(Ⅱ)请证明你的结论。

  • 题型:未知
  • 难度:未知

中,不等式成立;在四边形ABCD中,不等式成立;在五边形ABCDE中,不等式成立猜想在n边形中,有不等式_______________________________成立.

  • 题型:未知
  • 难度:未知

数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,;当时,
(Ⅰ)求
(Ⅱ)猜想,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法试题