赚现金
若不等式++…+>对一切正整数n都成立,猜想正整数a的最大值,并证明结论.
已知,,.(1)当时,试比较与的大小关系;(2)猜想与的大小关系,并给出证明.
已知,是函数的两个零点,其中常数,,设.(Ⅰ)用,表示,;(Ⅱ)求证:;(Ⅲ)求证:对任意的.
记的展开式中,的系数为,的系数为,其中(1)求(2)是否存在常数p,q(p<q),使,对,恒成立?证明你的结论.
各项均为正数的数列对一切均满足.证明:(1);(2).
已知数列中,,且.为数列的前项和,且.(1)求数列的通项公式;(2)设,求数列的前项的和;(3)证明对一切,有.
设数列{}满足:a1=2,对一切正整数n,都有(1)探讨数列{}是否为等比数列,并说明理由;(2)设
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(其中a>0且a≠1).记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论.
是否存在常数a,b使等式对于一切n∈N*都成立?若存在,求出a,b的值,若不存在,请说明理由。
试题篮