优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 三面角、直三面角的基本性质
高中数学

若函数           
(2)=          

  • 题型:未知
  • 难度:未知

,不等式的解集为,关于的不等式的解集记为,已知的充分不必要条件,则实数的取值范围是(     )

A. B. C. D.
  • 题型:未知
  • 难度:未知

为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

  • 题型:未知
  • 难度:未知

(本题满分13分)设函数满足:都有,且时,取极小值
(1)的解析式;
(2)当时,证明:函数图象上任意两点处的切线不可能互相垂直;
(3)设, 当时,求函数的最小值,并指出当取最小值时相应的值.

  • 题型:未知
  • 难度:未知

设函数是定义域为的奇函数.
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值为,求的值.

  • 题型:未知
  • 难度:未知

函数y=f(x)的图象如图所示,则不等式f(x)<f(-x)+x的解集为______。

  • 题型:未知
  • 难度:未知

某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙,地面利用原地面均不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,屋顶每平方米造价20元.
(1)仓库面积的最大允许值是多少?
(2)为使面积达到最大而实际投入又不超过预算,正面铁栅应设计为多长?

  • 题型:未知
  • 难度:未知

已知函数的零点,若,则的值为(   )

A.恒为负值 B.等于 C.恒为正值 D.不大于
  • 题型:未知
  • 难度:未知

已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程是否有实数解 .

  • 题型:未知
  • 难度:未知

设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

函数的值域是       

  • 题型:未知
  • 难度:未知

已知函数处取得最大值,则可能是( )

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知两条直线 (其中),与函数的图像从左至右相交于点与函数的图像从左至右相交于点.记线段轴上的投影长度分别为.当变化时,的最小值为(      )

A. B. C. D.
  • 题型:未知
  • 难度:未知

 
(1)当,求的取值范围;
(2)若对任意恒成立,求实数的最小值.

  • 题型:未知
  • 难度:未知

某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P与日产量x(万件)之间大体满足关系:(其中c为小于6的正常数).  (注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的元件可以盈利2万元,但每生产出1万件次品将亏损1万元,故厂方希望定出合适的日产量.
(1)试将生产这种仪器的元件每天的盈利额T(万元)表示为日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?

  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质试题