已知函数
(I)求函数的极值;
(II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”.
设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
已知函数在一个周期内的部分对应值如下表:
(I)求的解析式;
(II)设函数,,求的最大值和最小值.
已知函数①f(x)=x2;②f(x)=ex;③f(x)=ln x;④f(x)=cos x.其中对于f(x)定义域内的任意一个x1都存在唯一的x2,使f(x1)f(x2)=1成立的函数是( )
A.① | B.② | C.②③ | D.③④ |
已知函数
(I)求函数的最小值;
(II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”.
设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
随着机构改革工作的深入进行,各单位要减员增效。有一家公司现有职员人,(,且为偶数),每人每年可创利万元。据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年可多创利万元,但公司需支付下岗职员每人每年万元的生活费,并且该公司正常运转所需人数不得小于现有员工的,为获得最大的经济效益,该公司应裁员多少人?
集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},则下列函数(a、b、c、k都是常数):
① y=kx+b(k≠0,b≠0);② y=ax2+bx+c(a≠0);
③ y=ax(0<a<1);④ y=(k≠0);⑤ y=sinx.
其中属于集合M的函数是________.(填序号)
已知函数的图象过原点,且在原点处的切线斜率是,则不等式组所确定的平面区域在内的面积为 ( )
A. | B. | C. | D. |
已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程是否有实数解 .
已知两条直线和 (其中),与函数的图像从左至右相交于点,,与函数的图像从左至右相交于点,.记线段和在轴上的投影长度分别为.当变化时,的最小值为( )
A. | B. | C. | D. |
试题篮
()