对于函数,现给出四个命题:
①时,
为奇函数;
②的图象关于
对称;
③时,方程
有且只有一个实数根;
④方程至多有两个实数根
其中正确命题的序号为 .
给出如下四个命题:
①若“或
”为真命题,则
、
均为真命题;
②命题“若且
,则
”的否命题为“若
且
,则
”;
③在中,“
”是“
”的充要条件;
④已知条件,条件
,若
是
的充分不必要条件,则
的取值范围是
;
其中正确的命题的是 .
已知命题:“若
,则
有实数解”的逆命题;命题
:“若函数
的值域为
,则
”.以下四个结论:
①是真命题;②
是假命题;③
是假命题;④
为假命题.
其中所有正确结论的序号为 .
给出定义:若 (其中
为整数),则
叫做离实数
最近的整数,记作
,即
.在此基础上给出下列关于函数
的四个命题:
①函数的定义域是
,值域是
;
②函数的图像关于
轴对称;
③函数的图像关于坐标原点对称;
④ 函数在
上是增函数;
则其中正确命题是 (填序号).
下列说法不正确的是________.
(1)命题“若,则
”的否命题是真命题
(2)命题“”的否定是“
”
(3)时,幂函数
上单调递减
(4)若,向量
与向量
的夹角为120°,则
在向量
上的投影为1;
给出如下四个命题:
①若“或
”为真命题,则
、
均为真命题;
②命题“若且
,则
”的否命题为“若
且
,则
”;
③在中,“
”是“
”的充要条件;
④已知条件,条件
,若
是
的充分不必要条件,则
的取值范围是
;
其中正确的命题的是 .
给出下列结论:
①设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则α⊥β是a⊥b的必要不充分条件.
②在区间[-1,1]上随机取一个数x,则的值介于0到
之间的概率为
③从以正方体的顶点连线所成的直线中任取两条,则所取两条直线为异面直线的概率为
④将4个相同的红球和4个相同的篮球排成一排,从左到右每个球依次对应的序号为1,2,3,…,8,若同色球之间不加区分,则4个红球对应的序号之和小于4个蓝球对应的序号之和的排列方法种数为31.
其中正确结论的序号为 .
试题篮
()