优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 组合几何
高中数学

已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2tx-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[nn+2](n>0)上的最小值;
(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.

  • 题型:未知
  • 难度:未知

已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,的图象在点处的切线平行于直线,求的值;
(2)当时,在点处有极值,为坐标原点,若三点共线,求的值.

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)设,求的最小值;
(Ⅱ)如何上下平移的图象,使得的图象有公共点且在公共点处切线相同.

  • 题型:未知
  • 难度:未知

设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,若函数g(x)为偶函数,且当时,,求当时g(x)的表达式,并求函数g(x)在R上的最小值及相应的x值.

  • 题型:未知
  • 难度:未知

已知函数,设
(Ⅰ)求函数的单调区间
(Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值
(Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。

  • 题型:未知
  • 难度:未知

已知函数为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数上的符号,并证明:
).

  • 题型:未知
  • 难度:未知

高中数学组合几何试题