学校从参加高二年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表如下:
分组 |
频数 |
频率 |
[40,50) |
2 |
0.04 |
[50,60) |
3 |
0.06 |
[60,70) |
14 |
0.28 |
[70,80) |
15 |
0.30 |
[80,90) |
A |
B |
[90,100] |
4 |
0.08 |
合计 |
C |
D |
选修;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),若以原点为极点,轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使.
(Ⅰ)求点轨迹的直角坐标方程;
(Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值.
甲、乙、丙三班进行知识竞赛,每两班比赛一场,共赛三场.每场比赛胜者得分,负者得分,没有平局,在每一场比赛中,甲班胜乙班的概率为,甲班胜丙班的概率为,乙班胜丙班的概率为.
(Ⅰ)求甲班获第一名且丙班获第二名的概率;
(Ⅱ)设在该次比赛中,甲班得分为,求的分布列和数学期望.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求的值.
选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线(为参数).
(1)将与的方程化为普通方程;
(2)判定直线l与曲线 是否相交,若相交求出被截得的弦长.
在底面是矩形的四棱锥PABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角EACD的余弦值;
(3)求直线CD与平面AEC所成角的正弦值.
如图所示,在长方体中,,,M是棱的中点.
(1)求异面直线和所成的角的正切值;
(2)证明:平面平面.
试题篮
()