已知椭圆:的离心率,并且经过定点.
(1)求椭圆的方程;
(2)设为椭圆的左右顶点,为直线上的一动点(点不在x轴上),连交椭圆于点,连并延长交椭圆于点,试问是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
已知函数.
(1)求该函数图象的对称轴;
(2)在中,角所对的边分别为,且满足,求的取值范围.
如图,多边形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直线AD将△ADE折起至△ADP的位置,连接PB,BC,构成四棱锥P-ABCD,使得∠PAB=90°.点O为线段AD的中点,连接PO.
(1)求证:PO⊥平面ABCD;
(2)求异面直线CD与PA所成角的余弦值.
已知点P(x1,y1),Q(x2,y2)是函数f(x)=sin(ωx+Φ)(ω>0,0<Φ<)图象上的任意两点,若|y1-y2|=2时,|x1-x2|的最小值为,且函数f(x)的图象经过点(0,2),在△ABC中,角A,B,C的对边分别为a,b,c,且2sinAsinC+cos2B=1.
(1)求函数f(x)的解析式;
(2)求g(B)=f(B)+f(B+)的取值范围.
(本小题满分12分)已知函数在区间上的值域为.
(1)求函数的单调递增区间;
(2)在△ABC中,角A,B,C所对的边长分别为a,b,c,当m>0时,若,,△ABC的面积为,求边长a的值.
如图,多边形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直线AD将△ADE折起至△ADP的位置,连接PB,BC,构成四棱锥P-ABCD,使得∠PAB=90°.点O为线段AD的中点,连接PO.
(1)求证:PO⊥平面ABCD;
(2)求异面直线CD与PA所成角的余弦值.
设关于x的一元二次方程x2+2ax+b2=0
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个实数,b是从区间[0,2]任取的一个实数,求上述方程有实根的概率.
已知点P(x1,y1),Q(x2,y2)是函数f(x)=sin(ωx+Φ)(ω>0,0<Φ<)图象上的任意两点,若|y1-y2|=2时,|x1-x2|的最小值为,且函数f(x)的图象经过点(0,2),在△ABC中,角A,B,C的对边分别为a,b,c,且2sinAsinC+cos2B=1.
(1)求函数f(x)的解析式;
(2)求g(B)=f(B)+f(B+)的取值范围.
某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:日销售量Q(件)与实际销售价x(元)满足关系:
(1)求总利润(利润=销售额-成本)y(元)与销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.
试题篮
()