某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
(Ⅰ)试分别估计两个分厂生产的零件的优质品率;
(Ⅱ)由于以上统计数据填下面 列联表,并问是否有99%的把握认为"两个分厂生产的零件的质量有差异"。
附:
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。
(Ⅰ)若 , ,求直线MN的长;
(Ⅱ)用反证法证明:直线ME与BN是两条异面直线。
如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 , ,于水面C处测得B点和D点的仰角均为 ,AC=0.1km。试探究图中B,D间距离与另外哪两点距离相等,然后求B,D的距离(计算结果精确到0.01km, 1.414, 2.449)
已知函数 ,且
(1) 试用含 的代数式表示b,并求 的单调区间;
(2)令 ,设函数 在 处取得极值,记点 , , , ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的 ,线段MP与曲线 均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点 , ,使得线段 与曲线 有异于 、 的公共点,请直接写出 的取值范围(不必给出求解过程)
已知A,B 分别为曲线C: 与x轴的左、右两个交点,直线 过点B,且与 轴垂直,S为 上异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;
(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出 的值,若不存在,请说明理由。
如图,某市拟在长为的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段 ,该曲线段为函数 , 的图象,且图象的最高点为 ;赛道的后一部分为折线段 ,为保证参赛运动员的安全,限定
(Ⅰ)求A , 的值和M,P两点间的距离;
(Ⅱ)应如何设计,才能使折线段赛道 最长?
如图,四边形 是边长为 的正方形, , ,且 , 为 的中点.
(1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上是否存在点S,使得 ?若存在,求线段AS的长;若不存在,请说明理由
从集合 的所有非空子集中,等可能地取出一个。
(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2)记所取出的非空子集的元素个数为 ,求 的分布列和数学期望
已知二次函数 的导函数的图像与直线 平行,且 在 处取得极小值 .设 .
(1)若曲线 上的点 到点 的距离的最小值为 ,求 的值;
(2) 如何取值时,函数 存在零点,并求出零点.
已知曲线 与直线 交于两点 和 ,且 .记曲线 在点 和点 之间那一段 与线段 所围成的平面区域(含边界)为 .设点 是 上的任一点,且点 与点 和点 均不重合.
(1)若点 是线段 的中点,试求线段 的中点 的轨迹方程;
(2)若曲线 与点 有公共点,试求 的最小值.
如下图,已知正方体 的棱长为2,点E是正方形 的中心,点F、G分别是棱 的中点.设点 分别是点E,G在平面 内的正投影.
(1)求以E为顶点,以四边形 在平面 内的正投影为底面边界的棱锥的体积;
(2)证明:直线 ;
(3)求异面直线 所成角的正弦值.
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年( 365天)的空气质量进行监测,获得的API数据按照区间 进行分组,得到频率分布直方图如下图.
(1)求直方图中 的值;
(2)计算一年中空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有 2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知 )
试题篮
()