优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

设命题;命题:不等式对任意恒成立.若为真,且为真,求的取值范围.

  • 题型:未知
  • 难度:未知

已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E、F分别在棱AA′,CC′上,且AE=C′F=2.

(1) 求证:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一点M,使得C′M∥平面BEF,若存在,求值,若不存在,说明理由
(3)求棱锥-BEF的体积

  • 题型:未知
  • 难度:未知

已知的展开式中,各项系数和与它的二项式系数和的比为32.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.

  • 题型:未知
  • 难度:未知

选修4-5:不等式选讲
设函数 的最小值为
(1)求;
(2)已知两个正数m,n满足,求的最小值。

  • 题型:未知
  • 难度:未知

选修4-4:极坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系的长度单位相同。已知曲线C的极坐标方程为,斜率为的直线交y轴于点E(0,1).
(1)求曲线C的直角坐标方程,直线的参数方程;
(2)若直线与曲线C交于A,B两点,求 的值。

  • 题型:未知
  • 难度:未知

已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆左,右焦点分别为,过的直线与椭圆交于不同的两点,则△的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

在棱长为2的正方体中,设是棱的中点.

(1)求证:
(2)求证:平面
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

某校高三年级学生600名,从参加期中考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:

分组
频数
频率
[45,60)
2
0.04
[60,75)
4
0.08
[75,90)
8
0.16
[90,105)
11
0.22
[105,120)
15
0.30
[120,135)
a
b
[135,150]
4
0.08
合计
50
1

(1)写出的值;
(2)估计该校高三学生数学成绩在120分以上学生人数;
(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.

  • 题型:未知
  • 难度:未知

已知函数的部分图象如图所示.

(1)求函数的解析式,并写出 的单调递减区间;
(2)已知的内角分别是A,B,C,角A为锐角,的值.

  • 题型:未知
  • 难度:未知

选修4-1:几何证明选讲
如图,的直径,相切于为线段上一点,连接分别交两点,连接于点

(Ⅰ)求证:四点共圆;
(Ⅱ)若的三等分点且靠近,求线段的长.

  • 题型:未知
  • 难度:未知

设函数
(Ⅰ)求的最大值,并写出使取最大值时x的集合;
(Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,求的面积的最大值.

  • 题型:未知
  • 难度:未知

已知函数的导数,曲线在点处的切线方程为.
(1)求b,c的值;
(2)求函数的单调区间;
(3)设函数,且在区间内存在单调递减区间,求实数a的取值范围.

  • 题型:未知
  • 难度:未知

如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,.

(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

已知数列的前n项和和通项满足,等差数列中,.
(1)求数列的通项公式;
(2)数列满足,求证:.

  • 题型:未知
  • 难度:未知

已知函数,(为自然对数的底数).
(1)若不等式对于一切恒成立,求a的最小值;
(2)若对任意的,在上总存在两个不同的,使成立,求a的取值范围.

  • 题型:未知
  • 难度:未知

高中数学解答题