如图所示,光滑绝缘的细圆管弯成半径为R的半圆形,固定在竖直面内,管口B、C的连线水平.质量为m的带正电小球从B点正上方的A点自由下落,A、B两点间距离为4R。从小球(小球直径小于细圆管直径)进入管口开始,整个空间中突然加上一个斜向左上方的匀强电场,小球所受电场力在竖直方向上的分力方向向上,大小与重力相等,结果小球从管口C处离开圆管后,又能经过A点. 设小球运动过程中电荷量没有改变,重力加速度为g,求:
(1)小球到达B点时的速度大小;
(2)小球受到的电场力大小;
(3)小球经过管口C处时对圆管壁的压力.
石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖。用石墨烯制作超级缆绳,人类搭建"太空电梯"的梦想有望在本世纪实现。科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物资交换。
(1)若"太空电梯"将货物从赤道基站运到距地面高度为的同步轨道站,求轨道站内质量为的货物相对地心运动的动能。设地球自转角速度为,地球半径为。
(2)当电梯仓停在距地面高度的站点时,求仓内质量的人对水平地板的压力大小。取地面附近重力加速度,地球自转角速度,地球半径。
如图,一个质量为0.6kg的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。已知圆弧的半径R=0.3m, θ="60" 0,小球到达A点时的速度 v="4" m/s 。(取g ="10" m/s2)求:
小球做平抛运动的初速度v0 ;
P点与A点的水平距离和竖直高度;
小球到达圆弧最高点C时对轨道的压力。
(16分) 如图所示,ABC是固定在竖直平面内的绝缘圆弧轨道,圆弧半径为.A点与圆心O等高,B、C点处于竖直直径的两端.PA是一段绝缘的竖直圆管,两者在A点平滑连接,整个装置处于方向水平向右的匀强电场中.一质量为、电荷量为的小球从管内与C点等高处由静止释放,一段时间后小球离开圆管进入圆弧轨道运动.已知匀强电场的电场强度(为重力加速度),小球运动过程中的电荷量保持不变,忽略圆管和轨道的摩擦阻力.求:
(1)小球到达B点时速度的大小;
(2)小球到达B点时对圆弧轨道的压力;
(3)小球在圆弧轨道运动过程中速度最大为多少?
如图所示,传送带的两个轮子半径均为r=0.2m,两个轮子最高点A、B在同一水平面内,A、B间距离L=5m,半径R=0.4m的固定、竖直光滑圆轨道与传送带相切于B点,C点是圆轨道的最高点.质量m=0.1kg的小滑块与传送带之间的动摩擦因数μ=0.4,重力加速度g=10m/s2.求:
(1)传送带静止不动,小滑块以水平速度v0滑上传送带,并能够运动到C点,v0至少多大?
(2)当传送带的轮子以w=10rad/s的角速度转动时,将小滑块无初速地放到传送带上的A点,小滑块从A点运动到B点的时间t是多少?
(3)传送带的轮子以不同的角速度匀速转动,将小滑块无初速地放到传送带上的A点,小滑块运动到C点时,对圆轨道的压力大小不同,最大压力Fm是多大?
摩天大楼中一部直通高层的客运电梯,行程超过百米。电梯的简化模型如1所示。考虑安全、舒适、省时等因索,电梯的加速度a是随时间t变化的。已知电梯在t = 0时由静止开始上升,a - t图像如图2所示。电梯总质最m = 2.0× kg。忽略一切阻力,重力加速度g取10m/s2。
(1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2;
(2)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v - t图像求位移的方法。请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a - t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2;
(3)求电梯以最大速率上升时,拉力做功的功率p:再求在0~11s时间内,拉力和重力对电梯所做的总功W。
游乐园的小型“摩天轮”上对称站着质量均为m的8位同学,如图所示,“摩天轮”在竖直平面内逆时针匀速转动,若某时刻转到顶点a上的甲同学让一小重物做自由落体运动,并立即通知下面的同学接住,结果重物掉落时正处在c处(如图)的乙同学恰好在第一次到达最低点b处接到,己知“摩天轮”半径为R,重力加速度为g,(不计人和吊篮的大小及重物的质量).
问:(1)接住前重物下落运动的时间t="?" (2)人和吊篮随“摩天轮”运动的线速度大小v=? (3)乙同学在最低点处对地板的压力FN=?
如图所示,质量M=2 kg的滑块套在光滑的水平轨道上,质量m=1 kg的小球通过长L=0.5 m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0=4 m/s,g取10 m/s2。
(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向;
(2)解除对滑块的锁定,小球过最高点时速度大小v′=2 m/s,求此时滑块的速度大小。
如图所示,QB段为一半径为的光滑圆弧轨道,AQ段为一长度为的粗糙水平轨道,两轨道相切于Q点,Q在圆心O的正下方,整个轨道位于同一竖直平面内。物块的质量为m=1kg(可视为质点),P与AQ间的动摩擦因数,若物块以速度v0从A点滑上水平轨道,到C点后又返回A点时恰好静止。(取)求:
(1)v0的大小;
(2)物块P第一次刚通过Q点时对圆弧轨道的压力。
(10分)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示。设运动员的质量为65kg,吊椅的质量为15kg,不计定滑轮与绳子间的摩擦。重力加速度取g=10m/s2。当运动员与吊椅一起正以加速度a=1m/s2上升时,试求:
(1)运动员竖直向下拉绳的力;
(2)运动员对吊椅的压力。
如图所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B点相切,圆弧轨道的半径为R,圆心O与A、D在同一水平面上,∠COB=θ.现有质量为m的小物体从距D点为的高处无初速释放,已知物体恰能从D点进入圆轨道,求:
(1)为使小物体不会从A点冲出斜面,小物体与斜面间的动摩擦因数至少为多少?
(2)若小物块与斜面间的动摩擦因数μ=则小物体在斜面上通过的总路程为多少?
(3)在(2)的条件下,当小物体通过圆弧轨道最低点C时,对C的最大压力和最小压力各是多少?
如图所示,小球被轻质细绳系住斜吊着放在光滑斜面上,小球与斜面均处于静止状态,设小球质量m=2 kg,斜面倾角α=30°,细绳与竖直方向夹角θ=30°,光滑斜面体的质量M=3 kg,置于粗糙水平面上.(g取10 m/s2)求:
(1)细绳对小球拉力的大小;
(2)地面对斜面体的摩擦力的大小和方向.
(15分)如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气阻力影响,求:
⑴地面上DC两点间的距离s;⑵轻绳所受的最大拉力大小。
根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
试题篮
()