如图所示,是两条水平放置彼此平行的金属导轨,匀强磁场的磁感线垂直导轨平面.导轨左端接阻值的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆的质量,电阻.与导轨间动摩擦因数μ,导轨电阻不计.现用的恒力水平向右拉,使之从静止开始运动,经时间后,开始做匀速运动,此时电压表表示数.重力加速度.求:
(1)匀速运动时,外力的功率;
(2)杆加速过程中,通过的电量;
(3)杆加速运动的距离.
如图所示,PQ和MN是固定于水平面内的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab、cd的质量均为m,长度均为L。两金属棒的长度恰好等于轨道的间距,它们与轨道形成闭合回路。金属棒ab的电阻为2R,金属棒cd的电阻为R。整个装置处在竖直向上、磁感应强度为B的匀强磁场中。
(1)若保持金属棒ab不动,使金属棒cd在与其垂直的水平恒力F作用下,沿轨道以速度v做匀速运动。试推导论证:在Δt时间内,F对金属棒cd所做的功W等于电路获得的电能E电;
(2)若先保持金属棒ab不动,使金属棒cd在与其垂直的水平力F′(大小未知)作用下,由静止开始向右以加速度a做匀加速直线运动,水平力F′作用t0时间撤去此力,同时释放金属棒ab。求两金属棒在撤去F′后的运动过程中,
①金属棒ab中产生的热量;
②它们之间的距离改变量的最大值Dx。
质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数=0.2,g取10m/s²,求:
(1)物块在力F作用过程发生位移的大小;
(2)撤去力F后物块继续滑动的时间t。
如图所示,一物体从光滑固定斜面顶端由静止开始下滑。已知物体的质量m=0.50kg,斜面的倾角θ=30°,斜面长度L=2.5m,取重力加速度g=10m/s2。求:
(1)物体沿斜面由顶端滑到底端所用的时间;
(2)物体滑到斜面底端时的动能;
(3)在物体下滑的全过程中支持力对物体的冲量大小。
(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:
(1)释放小物体,第一次与滑板A壁碰前小物体的速度v1多大?
(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)
(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?
如图甲所示为车站使用的水平传送装置的示意图。绷紧的传送带长度L=6.0m,以v=6.0m/s的恒定速率运行,传送带的水平部分AB距离水平地面的高度h=0.45m。现有一行李箱(可视为质点)质量m=10kg,以v0=5.0m/s的水平初速度从A端滑上传送带,被传送到B端时没有被及时取下,行李箱从B端水平抛出,行李箱与传送带间的动摩擦因数(=0.20,不计空气阻力,重力加速度g取10 m/s2。试分析求解:
(1)行李箱从传送带上A端运动到B端过程中摩擦力对行李箱冲量的大小;
(2)为运送该行李箱电动机多消耗的电能;
(3)若传送带的速度v可在0~8.0m/s之间调节,仍以v0的水平初速度从A端滑上传送带,且行李箱滑到B端均能水平抛出。请你在图乙中作出行李箱从B端水平抛出到落地点的水平距离x与传送带速度v的关系图象。(要求写出作图数据的分析过程)
如图所示,固定在竖直平面内半径为R的四分之一光滑圆弧轨道与水平光滑轨道平滑连接,A、B、C三个滑块质量均为m,B、C带有同种电荷且相距足够远,静止在水平轨道上的图示位置。不带电的滑块A从圆弧上的P点由静止滑下(P点处半径与水平面成300角),与B发生正碰并粘合,然后沿B、C两滑块所在直线向C滑块运动。
求:①A、B粘合后的速度大小;
②A、B粘合后至与C相距最近时系统电势能的变化。
如图所示,质量为m=1kg的滑块,以υ0=5m/s的水平初速度滑上静止在光滑水平面的平板小车,若小车质量M=4kg,平板小车足够长,滑块在平板小车上滑移1s后相对小车静止。求:(g取10m/s2)
(1)滑块与平板小车之间的滑动摩擦系数μ; (2)此时小车在地面上滑行的位移?
雨滴在空中下落时,由于空气阻力的影响,最终会以恒定的速度匀速下降,我们把这个速度叫做收尾速度。研究表明,在无风的天气条件下,空气对下落雨滴的阻力可由公式来计算,其中C为空气对雨滴的阻力系数(可视为常量),ρ为空气的密度,S为雨滴的有效横截面积(即垂直于速度v方向的横截面积)。
假设雨滴下落时可视为球形,且在到达地面前均已达到收尾速度。每个雨滴的质量均为m,半径均为R,雨滴下落空间范围内的空气密度为ρ0,空气对雨滴的阻力系数为C0,重力加速度为g。
(1)求雨滴在无风的天气条件下沿竖直方向下落时收尾速度的大小;
(2)若根据云层高度估测出雨滴在无风的天气条件下由静止开始竖直下落的高度为h,求每个雨滴在竖直下落过程中克服空气阻力所做的功;
(3)大量而密集的雨滴接连不断地打在地面上,就会对地面产生持续的压力。设在无风的天气条件下雨滴以收尾速度匀速竖直下落的空间,单位体积内的雨滴个数为n(数量足够多),雨滴落在地面上不反弹,雨滴撞击地面时其所受重力可忽略不计,求水平地面单位面积上受到的由于雨滴对其撞击所产生的压力大小。
如图所示,直角坐标系xoy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右。空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xoy平面向里,磁感应强度大小为B。匀强电场(图中未画出)方向平行于xoy平面,小球(可视为质点)的质量为m、带电量为+q,已知电场强度大小为,g为重力加速度。
(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;
(2)若匀强电场在xoy平面内的任意方向,确定小球在xoy平面内做直线运动的速度大小的范围;
(3)若匀强电场方向竖直向下,将小球从O点由静止释放,求小球运动过程中距x轴的最大距离。
如图所示,有一质量为M=2kg的平板小车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处分别以初速度v1=2m/s向左和v2=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车。已知两物块与小车间的动摩擦因数都为μ=0.1,取g=10m/s2。求:
(1)小车的长度L;
(2)A在小车上滑动的过程中产生的热量;
(3)从A、B开始运动计时,经5s小车离原位置的距离。
如图所示,长S=10m的平台AB固定,长L=6m质量M=3kg的木板放在光滑地面上,与平台平齐且靠在B处,右侧有落差h=0.1m的光滑弧形桥CD(桥的支柱未画出),桥面的最低位置与AB水平线等高(木板可从桥下无障碍的前行)。已知木板右侧与弧形桥左侧C端的水平距离d=1.5m,弧形桥顶部圆弧半径相等R=0.4m(半径未画出)。现有质量m=1kg的物块,以初速度v0=12m/s从A点向右运动,过B点后滑上木板,物块与平台、木板间的滑动摩擦因数 μ=0.4,物块滑上弧形桥时无机械能损失,当物块到达圆弧最高点时D时,木板中点刚好到达D点正下方。物块大小忽略,重力加速度g=10m/s2。求:
(1)物块滑至B点时的速度大小v;
(2)物块与木板能否达到共速,若能,确定两物体共速时木板的位置和物块在木板上的位置;
(3)物块到达弧形桥顶端D点时所受到的支持力F及物块与木板相碰点到木板左端的距离S0.
如图所示,质量为M、半径为R的质量分布均匀的圆环静止在粗糙的水平桌面上,一质量为m(m>M)的光滑小球以某一水平速度通过环上的小孔正对环心射入环内,与环发生第一次碰撞后到第二次碰撞前小球恰好不会从小孔中穿出。假设小球与环内壁的碰撞为弹性碰撞,只考虑圆环与桌面之间的摩擦,求圆环通过的总位移?
如图所示,有一内表面光滑的金属盒,底面长为L=1.2m,质量为m1=1kg,放在水平面上,与水平面间的动摩擦因数为μ=0.2,在盒内最右端放一半径为r=0.1m的光滑金属球,质量为m2=1kg,现在盒的左端,给盒一个初速度v=3m/s(盒壁厚度,球与盒发生碰撞的时间和能量损失均忽略不计,g取10m/s2)求:金属盒从开始运动到最后静止所经历的时间?
如图所示,在光滑水平地面上有一固定的挡板,挡板左端固定一个轻弹簧。现有一质量M=3kg,长L=4m的小车AB(其中为小车的中点,部分粗糙,部分光滑)一质量为m=1kg的小物块(可视为质点),放在车的最左端,车和小物块一起以4m/s的速度在水平面上向右匀速运动,车撞到挡板后瞬间速度变为零,但未与挡板粘连。已知车部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内,小物块与车部分之间的动摩擦因数为0.3,重力加速度。求:
(1)小物块和弹簧相互作用的过程中,弹簧具有的最大弹性势能;
(2)小物块和弹簧相互作用的过程中,弹簧对小物块的冲量;
(3)小物块最终停在小车上的位置距端多远。
试题篮
()