如图所示,竖直面内有个光滑的3/4圆形导轨固定在一水平地面上,半径为R。一个质量为的小球从距水平地面正上方h高处的P点由静止开始自由下落,恰好从N点沿切线方向进入圆轨道。不考虑空气阻力,则下列说法正确的是
A.适当调整高度h,可使小球从轨道最高点M飞出后,恰好落在轨道右端口N处 |
B.若h=2R,则小球在轨道最低点对轨道的压力为5mg |
C.只有h大于等于2.5R时,小球才能到达圆轨道的最高点M |
D.若h=R,则小球能上升到圆轨道左侧离地高度为R的位置,该过程重力做功为mgR |
甲、乙两物体所受的重力之比为1:2,甲,乙两物体所在的位置高度之比为2:l,它们自做自由落体运动,则( )
A.落地时的速度之比是 |
B.落地时的速度之比是1 : 1 |
C.下落过程中的加速度之比是1 : 2 |
D.下落过程中加速度之比是1:1 |
已知雨滴在空中运动时所受空气阻力,其中k为比例系数,r为雨滴半径,为其运动速率。t=0时,雨滴由静止开始下落,加速度用a表示。落地前雨滴已做匀速运动,速率为。下列图像中错误的是
物体做自由落体运动Ek表示其动能,Ep表示其势能,h表示其下落的距离, t、v分别表示其下落的时间和速度,以水平面为零势能面,下列图像中能正确反映各物理量之间关系的是( )
下列各叙述中,正确的是( )
A.重心、合力和平均速度等概念的建立都体现了等效替代的思想 |
B.库伦提出了用电场线描述电场的方法 |
C.伽利略猜想自由落体的运动速度与下落时间成正比,并直接用实验进行了验证 |
D.用比值法定义的物理概念在物理学中占有相当大的比例,例如电场强度,电容,加速度都是采用了比值法定义的 |
如图,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将环从与定滑轮等高的A处由静止释放,当环沿直杆下滑距离也为d时(图中B处),下列说法正确的是(重力加速度为g)( )
A.小环刚释放时轻绳中的张力一定大于2mg |
B.小环到达B处时,重物上升的高度也为d |
C.小环在B处的速度与重物上升的速度大小之比等于 |
D.小环在B处时的速度为 |
质量为0.1kg的小球从空中某高度由静止开始下落到地面,该下落过程对应的v-t图像如图所示,小球与水平地面每次碰撞后离开地面时的速度大小为碰撞前的,小球运动受到空气阻力大小恒定,取,下列说法正确的是( )
A.小球受到空气阻力大小0.3N |
B.小球上升时的加速度大小为 |
C.小球第一次上升的高度为0.375m |
D.小球第二次下落的时间为 |
人类对落体运动的认识经历了差不多两千多年的时间,下列有关落体运动的说法不正确的是( )
A.亚里士多德认为物体下落的快慢由其物重决定 |
B.如果完成排除空气的阻力,落体运动就成为自由落体运动 |
C.考虑空气阻力的影响,较轻的物体下落的快一些 |
D.伽利略在研究落体运动时用到了理想斜面实验 |
一小球从A点做自由落体运动,另一小球从B点做平抛运动,两小球恰好同时到达C点,已知AC高为h,两小球在C点相遇前瞬间速度大小相等,方向成60°夹角,g=10m/s2.由以上条件可求( )
A.两小球在C点所用时间之比为1:2
B.做平抛运动的小球初速度大小为
C.A.B两点的高度差为
D.A.B两点的水平距离为
如图所示,质量相同的两物体处于同一高度,A沿固定在地面上的光滑斜面下滑,B自由下落,最后到达同一水平面,则
A.重力对两物体做的功相同 |
B.重力的平均功率相同 |
C.到达底端时重力的瞬时功率PA=PB |
D.到达底端时两物体的速度相同 |
下列说法中正确的是
A.一个物体能不能看做质点是由它的大小决定 |
B.地球表面上北极的重力加速大于赤道上的重力加速度 |
C.伽利略最早用科学的方法研究了自由落体运动 |
D.弹簧的弹力与弹簧的总长度成正比关系 |
一位宇航员在X星球上完成自由落体运动实验:让一个小球从一定的高度自由下落,测得在第5s内的位移是18 m,则
A.物体在2s末的速度是20 m/s |
B.物体在第5s内的平均速度是3.6 m/s |
C.物体在前2s内的位移是20 m |
D.物体在5s内的位移是50 m |
某物体做自由落体运动(),则
A.第2s的平均速度为15m/s |
B.后一秒的位移总比前一秒的位移多5m |
C.前一秒的平均速度总比后一秒的平均速度小10m/s |
D.第7s的位移为65m |
四个小球在离地面不同高度同时从静止释放,不计空气阻力,从开始运动时刻起每隔相等的时间间隔,小球依次碰到地面。下列各图中,能反映出刚开始运动时各小球相对地面的位置的是( )
试题篮
()