如下图(a)所示,间距为L、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B,在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如下图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知ab棒和cd棒的质量均为m、电阻均为R,区域Ⅱ沿斜面的长度为2L,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:
(1)通过cd棒电流的方向和区域I内磁场的方向
(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率和热量
(3)ab棒开始下滑至EF的过程中流过导体棒cd的的电量
变化的磁场可以激发感生电场,电子感应加速器就是利用感生电场使电子加速的设备。它的基本原理如图所示,上、下为两个电磁铁,磁极之间有一个环形真空室,电子在真空室内做圆周运动。电磁铁线圈电流的大小、方向可以变化,在两极间产生一个由中心向外逐渐减弱、而且变化的磁场,这个变化的磁场又在真空室内激发感生电场,其电场线是在同一平面内的一系列同心圆,产生的感生电场使电子加速。图1中上部分为侧视图、下部分为俯视图。已知电子质量为m、电荷量为e,初速度为零,电子圆形轨道的半径为R。穿过电子圆形轨道面积的磁通量Φ随时间t的变化关系如图2所示,在t0时刻后,电子轨道处的磁感应强度为B0,电子加速过程中忽略相对论效应。
|
(1)求在t0时刻后,电子运动的速度大小;
(2)求电子在整个加速过程中运动的圈数;如图(a)所示,两条间距为h的水平虚线之间存在方向水平向里的匀强磁场,磁感应强度大小按图(b)中B-t图象变化(图中Bo已知)。现有一个“日”字形刚性金 属,线框ABCDEF,它的质量为m,EF中间接有一开关S,开关S闭合时三条水平边框的电阻均为R,其余各边电阻不计。AB=CD=EF=L,AD=DE=h。用两根轻质的绝缘细线把线框竖直悬挂住,AB边恰好在磁场区域M1 N1和M2N2的正中间,开始开关S处于断开状态。t0(未知)时刻细线恰好松弛,此后闭合开关同时剪断两根细线,当CD边刚进入磁场上边界Mi Ni时线框恰好做匀速运动(空气阻力不计)。求:
(1)t0的值;
(2)线框EF边刚离开磁场下边界M2N2时的速度;
(3)从剪断细线到线框EF边离开磁场下边界M2N2的过程中金属线框中产生的焦耳热。
如图,两倾角为θ、间距为l的光滑金属平行轨道,轨道间接有电阻R,导轨电阻不计。轨道平面处于垂直平面向上、磁感应强度为B的匀强磁场中。有一质量为m、长为l、电阻为r的导体棒,从轨道上某处由静止开始下滑距离x时达最大速度。则从导体棒开始下滑到达到最大速度的过程中,下列说法中正确的是
A.导体棒做变加速直线运动 |
B.导体棒最大速度 |
C.通过导体棒的电量 |
D.电路中产生的焦耳热 |
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
如图所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为q,两导轨间距为L。导轨电阻忽略不计。导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。已知金属杆ab的质量为m,电阻为R2,重力加速度为g。忽略螺线管磁场对金属杆ab的影响、忽略空气阻力。
(1)为使ab杆保持静止,求通过ab的电流的大小和方向;
(2)当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
(3)若螺线管内方向向左的磁场的磁感应强度的变化率DB/Dt=k(k>0)。将金属杆ab由静止释放,杆将沿斜面向下运动。求当杆的速度为v时,杆的加速度大小。
如图甲所示,固定于水平面上的两根互相平行且足够长的金属导轨,处在方向竖直向下的匀强磁场中。两导轨间距离l= 0.5m,两轨道的左端之间接有一个R=0.5W的电阻。导轨上垂直放置一根质量m=0.5kg的金属杆。金属杆与导轨的电阻忽略不计。将与导轨平行的恒定拉力F作用在金属杆上,使杆从静止开始运动,杆最终将做匀速运动。当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如图乙所示。取重力加速度g=10m/s2,金属杆与导轨间的最大静摩擦力与滑动摩擦力相等,金属杆始终与轨道垂直且它们之间保持良好接触。
(1)金属杆在匀速运动之前做什么运动?
(2)求磁感应强度B的大小,以及金属杆与导轨间的动摩擦因数μ 。
高频焊接是一种常用的焊接方法,图1是焊接的原理示意图。将半径r=0.10m的待焊接环形金属工件放在线圈中,然后在线圈中通以高频变化的电流,线圈产生垂直于工件平面的匀强磁场,磁场方向垂直线圈平面向里,磁感应强度B随时间t的变化规律如图2所示。工件非焊接部分单位长度上的电阻R0=1.0×10-3m-1,焊缝处的接触电阻为工件非焊接部分电阻的9倍。焊接的缝宽非常小,不计温度变化对电阻的影响。求:
(1)0~2.010-2s和2.010-2s~3.010-2s时间内环形金属工件中感应电动势各是多大;
(2)0~2.010-2s和2.010-2s~3.010-2s时间内环形金属工件中感应电流的大小,并在图3中定量画出感应电流随时间变化的i-t图象(以逆时针方向电流为正);
(3)在t=0.10s内电流通过焊接处所产生的焦耳热。
如图甲所示,静止在粗糙水平面上的正三角形金属线框,匝数N=10、总电阻R = 2.5Ω、边长L = 0.3m,处在两个半径均为r =的圆形匀强磁场区域中,线框顶点与右侧圆形中心重合,线框底边中点与左侧圆形中心重合.磁感应强度B1垂直水平面向外,大小不变、B2垂直水平面向里,大小随时间变化,B1、B2的值如图乙所示.线框与水平面间的最大静摩擦力f =" 0.6N" ,(取),求:
(1)t = 0时刻穿过线框的磁通量;
(2)线框滑动前的电流强度及电功率;
(3)经过多长时间线框开始滑动及在此过程中产生的热量.
如图,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块和质量为的缓冲车厢.在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN.缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B.导轨内的缓冲滑块由高强度绝缘材料制成,滑块上绕有闭合矩形线圈,线圈的总电阻为,匝数为,边长为.假设缓冲车以速度与障碍物碰撞后,滑块立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计.
(1)求滑块的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离后速度为零,缓冲车厢与障碍物和线圈的边均没有接触,则此过程线圈中通过的电量和产生的焦耳热各是多少?
(10分)如图所示,倾角θ=30°、宽L=1m的足够长的U形光滑金属导轨固定在磁感应强度大小B=IT、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。一根质量m=0.2kg,电阻R=l的金属棒ab垂直于导轨放置。现用一平行于导轨向上的牵引力F作用在棒上,使棒由静止开始沿导轨向上运动,运动中ab棒始终与导轨接触良好,导轨 电阻不计,重力加速度g取l0m/s2。求:
(1)若牵引力的功率P恒为56W,则ab棒运动的最终速度为多大?
(2)当ab棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab棒的速度为零,通过ab棒的电量q=0.5C,则撤去牵引力后ab棒向上滑动的距离多大?
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:
(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离是多少?
(18分)如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.
(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.
如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电阻不计的平行光滑金属导轨ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长。已知导体棒下落r/2时的速度大小为v1,下落到MN处时的速度大小为v2。
(1)求导体棒ab从A处下落r/2时的加速度大小;
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II这间的距离h和R2上的电功率P2;
(3)若将磁场II的CD边界略微下移,导体棒ab进入磁场II时的速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
试题篮
()