如图所示,相距为L的两条足够长光滑平行金属导轨固定在水平面上,导轨由两种材料组成。PG右侧部分单位长度电阻为r0,且PQ=QH=GH=L。PG左侧导轨与导体棒电阻均不计。整个导轨处于匀强磁场中,磁场方向垂直于导轨平面向下,磁感应强度为B。质量为m的导体棒AC在恒力F作用下从静止开始运动,在到达PG之前导体棒AC已经匀速。
(1)求当导体棒匀速运动时回路中的电流;
(2)若导体棒运动到PQ中点时速度大小为v1,试计算此时导体棒加速度;
(3)若导体棒初始位置与PG相距为d,运动到QH位置时速度大小为v2,试计算整个过程回路中产生的焦耳热。
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图所示,间距为L的光滑M、N金属轨道水平平行放置,ab是电阻为R0的金属棒,可紧贴导轨滑动,导轨右侧连接水平放置的平行板电容器,板间距为d,板长也为L,导轨左侧接阻值为R的定值电阻,其它电阻忽略不计.轨道处的磁场方向垂直轨道平面向下,电容器处的磁场垂直纸面向里,磁感应强度均为B.当ab以速度v0向右匀速运动时,一带电量大小为q的颗粒以某一速度从紧贴A板左侧平行于A板进入电容器内,恰好做匀速圆周运动,并刚好从C板右侧边缘离开.求:
(1)AC两板间的电压U;
(2)带电颗粒的质量m;
(3)带电颗粒的速度大小v.
如图所示,MN、PQ是两根足够长的光滑平行金属导轨,导轨间距为d,导轨所在平面与水平面成θ角,M、P间接阻值为R的电阻。匀强磁场的方向与导轨所在平面垂直,磁感应强度大小为B。质量为m、阻值为r的金属棒放在两导轨上,在平行于导轨的拉力作用下,以速度v匀速向上运动。已知金属棒与导轨始终垂直并且保持良好接触,重力加速度为g,求:
(1)金属棒产生的感应电动势E;
(2)通过电阻R电流I;
(3)拉力F的大小。
如图甲所示,固定于水平面上的两根互相平行且足够长的金属导轨,处在方向竖直向下的匀强磁场中。两导轨间距离l= 0.5m,两轨道的左端之间接有一个R=0.5W的电阻。导轨上垂直放置一根质量m=0.5kg的金属杆。金属杆与导轨的电阻忽略不计。将与导轨平行的恒定拉力F作用在金属杆上,使杆从静止开始运动,杆最终将做匀速运动。当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如图乙所示。取重力加速度g=10m/s2,金属杆与导轨间的最大静摩擦力与滑动摩擦力相等,金属杆始终与轨道垂直且它们之间保持良好接触。
(1)金属杆在匀速运动之前做什么运动?
(2)求磁感应强度B的大小,以及金属杆与导轨间的动摩擦因数μ 。
两足够长的平行金属导轨间的距离为L,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B、方向垂直于导轨所在平面的匀强磁场.把一个质量为m的导体棒ab放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻为R1.完成下列问题:
(1) 如图甲,金属导轨的一端接一个内阻为r的直流电源。撤去外力后导体棒仍能静止.求直流电源电动势;
(2) 如图乙,金属导轨的一端接一个阻值为R2的定值电阻,撤去外力让导体棒由静止开始下滑.在加速下滑的过程中,当导体棒的速度达到v时,求此时导体棒的加速度;
(3) 求(2)问中导体棒所能达到的最大速度。
两根足够长的光滑平行直导轨MN、PQ与水平面成角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻,一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计,现让ab杆由静止开始沿导轨下滑。
(1)求ab杆下滑的最大速度;
(2)ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x
如图,两倾角为θ、间距为l的光滑金属平行轨道,轨道间接有电阻R,导轨电阻不计。轨道平面处于垂直平面向上、磁感应强度为B的匀强磁场中。有一质量为m、长为l、电阻为r的导体棒,从轨道上某处由静止开始下滑距离x时达最大速度。则从导体棒开始下滑到达到最大速度的过程中,下列说法中正确的是
A.导体棒做变加速直线运动 |
B.导体棒最大速度 |
C.通过导体棒的电量 |
D.电路中产生的焦耳热 |
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
如图所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为q,两导轨间距为L。导轨电阻忽略不计。导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。已知金属杆ab的质量为m,电阻为R2,重力加速度为g。忽略螺线管磁场对金属杆ab的影响、忽略空气阻力。
(1)为使ab杆保持静止,求通过ab的电流的大小和方向;
(2)当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
(3)若螺线管内方向向左的磁场的磁感应强度的变化率DB/Dt=k(k>0)。将金属杆ab由静止释放,杆将沿斜面向下运动。求当杆的速度为v时,杆的加速度大小。
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为L的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m、电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔S1处进入电容器,穿过小孔S2后从距三角形A点(﹣1)L的P处垂直AB方向进入磁场,
(1)求粒子到达小孔S2时的速度;
(2)若已知粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若磁场的磁感应强度的大小可以任意取值,设能从AC边射出的粒子离开磁场时的位置到A点的距离为x,求x的取值范围.
如图所示,倾角为θ=30°、足够长的光滑平行金属导轨MN、PQ相距L1=0.4m,B1=5T的匀强磁场垂直导轨平面向上。一质量m=1.6kg的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,其电阻r=1Ω。金属导轨上端连接右侧电路,R1=1Ω,R2=1.5Ω。R2两端通过细导线连接质量M=0.6kg的正方形金属框cdef,每根细导线能承受的最大拉力Fm=3.6N,正方形边长L2=0.2 m,每条边电阻r0=1Ω,金属框处在一方向垂直纸面向里、B2=3T的匀强磁场中。现将金属棒由静止释放,不计其他电阻及滑轮摩擦,取g=10m/s2。求:
(1)电键S断开时棒ab下滑过程中的最大速度vm;
(2)电键S闭合,细导线刚好被拉断时棒ab的速度v;
(3)若电键S闭合后,从棒ab释放到细导线被拉断的过程中棒ab上产生的电热Q=2J,此过程中棒ab下滑的高度h。
如图左下图所示,一对平行光滑轨道放置在水平面上,两轨道相距L=1m,两轨道用的电阻连接,有一质量m=0.5kg的导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直轨道平面向上。现用水平拉力F沿水平方向拉动导体杆,则:
(1)若拉力F大小恒为4N,请说明导体杆做何种运动,最终速度为多少?
(2)若拉力F大小恒为4N,且已知从静止开始直到导体棒达到稳定速度所经历的位移为s=10m,求在此过程中电阻R上所生的热;
(3)若拉力F为变力,在其作用下恰使导体棒做加速度为a=2m/s2的匀加速直线运动,请写出拉力F随时间t的变化关系式
如图甲所示,长、宽分别为L1、L2的矩形金属线框位于竖直平面内,其匝数为n,总电阻为r,可绕其竖直中心轴O1O2转动。线框的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷和定值电阻R相连。线框所在空间有水平向右均匀分布的磁场,磁感应强度B的大小随时间t的变化关系如图乙所示,其中B0、B1和t1均为已知。在0~t1的时间内,线框保持静止,且线框平面和磁场垂直;t1时刻后线框在外力的驱动下开始绕其竖直中心轴以角速度ω匀速转动。求:
(1)0~t1时间内通过电阻R的电流大小;
(2)线框匀速转动后,在转动一周的过程中电流通过电阻R产生的热量;
(3)线框匀速转动后,从图甲所示位置转过90°的过程中,通过电阻R的电荷量。
如下图(a)所示,间距为L、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B,在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如下图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知ab棒和cd棒的质量均为m、电阻均为R,区域Ⅱ沿斜面的长度为2L,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:
(1)通过cd棒电流的方向和区域I内磁场的方向
(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率和热量
(3)ab棒开始下滑至EF的过程中流过导体棒cd的的电量
试题篮
()