图1是交流发电机模型示意图.在磁感应强度为B的匀强磁场中,有一矩形线图abcd可绕线圈平面内垂直于磁感线的轴OO′转动,由线圈引出的导线ae和df分别与两个跟线圈一起绕OO′转动的金属圈环相连接,金属圈环又分别与两个固定的电刷保持滑动接触,这样矩形线圈在转动中就可以保持和外电阻R形成闭合电路.图2是线圈的正视图,导线ab和cd分别用它们的横截面来表示.已知ab长度为L1,bc长度为L2,线圈以恒定角速度ω逆时针转动.(共N匝线圈)
(1)线圈平面处于中性面位置时开始计时,推导t时刻整个线圈中的感应电动势e1表达式;
(2)线圈平面处于与中性面成φ0夹角位置时开始计时,如图3所示,写出t时刻整个线圈中的感应电动势e2的表达式;
(3)若线圈电阻为r,求电阻R两端测得的电压,线圈每转动一周电阻R上产生的焦耳热.(其它电阻均不计)
【原创】如图,光滑的足够长的平行水平金属导轨MN、PQ相距l,在M、P点和N、Q点间各连接一个额定电压为U、阻值恒为R的灯泡,在两导轨间efhg矩形区域内有垂直导轨平面竖直向下、宽为d的有界匀强磁场,磁感应强度为B0,且磁场区域可以移动。一电阻也为R、质量为m、长度也刚好为l的导体棒ab垂直固定在磁场左边的导轨上,离灯L1足够远。现让ab从静止开始向右做匀加速直线运动,当棒ab刚进入磁场如果保持拉力不变,进入磁场后ab棒刚好匀速运动,同时两灯恰好正常工作,棒ab与导轨始终保持良好接触,导轨电阻不计。
(1)求ab棒刚开始运动时到磁场右边界的距离;
(2)求ab棒刚开始运动时到磁场右边界这个过程中拉力F做的功;
(3)若取走导体棒ab,保持磁场不移动(仍在efhg矩形区域),而是均匀改变磁感应强度,为保证两灯都不会烧坏且有电流通过,试求磁感应强度增大到2B0的最短时间tmin。
某电子天平原理如图所示,形磁铁的两侧为极,中心为极,两级间的磁感应强度大小均为,磁极的宽度均为的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流可确定重物的质量.已知线圈的匝数为,线圈的电阻为,重力加速度为。问:
(1)线圈向下运动过程中,线圈中感应电流是从端还是端流出?
(2)供电电流是从端还是端流入?求重物质量与电流的关系.
(3)若线圈消耗的最大功率为,该电子天平能称量的最大质量是多少
如图甲所示,电阻不计的光滑平行金属导轨固定在水平面上,导轨间距L="0.5" m,左端连接R="0.5" Ω的电阻,右端连接电阻不计的金属卡环。导轨间MN右侧存在方向垂直导轨平面向下的磁场.磁感应强度的B-t图象如图乙所示。电阻不计质量为m="1" kg的金属棒与质量也为m的物块通过光滑滑轮由绳相连,绳始终处于绷紧状态。PQ、MN到右端卡环距离分别为17.5 m和15 m。t=0时刻由PQ位置静止释放金属棒,金属棒与导轨始终接触良好,滑至导轨右端被卡环卡住不动。(g取10 m/s2)求:
(1)金属棒进入磁场时受到的安培力
(2)在0~6 s时间内电路中产生的焦耳热
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
两足够长的平行金属导轨间的距离为L,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B、方向垂直于导轨所在平面的匀强磁场.把一个质量为m的导体棒ab放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻为R1.完成下列问题:
(1) 如图甲,金属导轨的一端接一个内阻为r的直流电源。撤去外力后导体棒仍能静止.求直流电源电动势;
(2) 如图乙,金属导轨的一端接一个阻值为R2的定值电阻,撤去外力让导体棒由静止开始下滑.在加速下滑的过程中,当导体棒的速度达到v时,求此时导体棒的加速度;
(3) 求(2)问中导体棒所能达到的最大速度。
如图所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为q,两导轨间距为L。导轨电阻忽略不计。导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。已知金属杆ab的质量为m,电阻为R2,重力加速度为g。忽略螺线管磁场对金属杆ab的影响、忽略空气阻力。
(1)为使ab杆保持静止,求通过ab的电流的大小和方向;
(2)当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
(3)若螺线管内方向向左的磁场的磁感应强度的变化率DB/Dt=k(k>0)。将金属杆ab由静止释放,杆将沿斜面向下运动。求当杆的速度为v时,杆的加速度大小。
电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的本质联系。
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,这就是法拉第电磁感应定律。
(1)如图所示,把矩形线框abcd放在磁感应强度为B的匀强磁场里,线框平面跟磁感线垂直。设线框可动部分ab的长度为L,它以速度v向右匀速运动。请根据法拉第电磁感应定律推导出闭合电路的感应电动势E=BLv。
(2)两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。两导轨间接有阻值为R的电阻。一根质量为m的均匀直金属杆MN放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆MN由静止沿导轨开始下滑。求
①当导体棒的速度为v(未达到最大速度)时,通过MN棒的电流大小和方向;
②导体棒运动的最大速度。
如图所示,固定的光滑金属导轨间距为d,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向下的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)若导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,整个电路产生的焦耳热Q。
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图甲所示,两根足够长的平行光滑金属导轨MN、PQ被固定在水平面上,导轨间距 l="0.6" m,两导轨的左端用导线连接电阻R1及理想电压表,电阻r=2Ω的金属棒垂直 于导轨静止在AB处;右端用导线连接电阻R2,已知R1=2Ω,R2=1Ω,导轨及导线电阻 均不计.在矩形区域CDEF内有竖直向上的磁场,CE="0.2" m,磁感应强度随时间的变化 如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右 的恒力F,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场运 动过程中电压表的示数始终保持不变.求:
(1)t="0.1" s时电压表的读数;
(2)恒力F的大小;
(3)从t=0时刻到金属棒运动出磁场过程中整个电路产生的热量.
如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m,R是连接在导轨一端的电阻,ab是跨接在导轨上质量为m=0.1kg的导体棒。从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好。图乙是棒的v-t图象,其中OA段是直线,AC是曲线,DE是曲线图象的渐进线,小型电动机在12s末达到额定功率P=4.5W,此后保持功率不变。除R外,其余部分电阻均不计,g=10m/s2,求:
(1)ab在0~12s内的加速度大小;
(2)ab与导轨间的动摩擦因数;
(3)电阻R的阻值;
(4)若t=17s时,导体棒ab达到最大速度,从0~17s内的位移为100m,求12~17s内,R上产生的热量。
如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计。磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω。两金属导轨的上端连接右端电路,灯泡电阻RL=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g="10" m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:
(1)金属棒下滑的最大速度vm;
(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q。
变化的磁场可以激发感生电场,电子感应加速器就是利用感生电场使电子加速的设备。它的基本原理如图所示,上、下为两个电磁铁,磁极之间有一个环形真空室,电子在真空室内做圆周运动。电磁铁线圈电流的大小、方向可以变化,在两极间产生一个由中心向外逐渐减弱、而且变化的磁场,这个变化的磁场又在真空室内激发感生电场,其电场线是在同一平面内的一系列同心圆,产生的感生电场使电子加速。图1中上部分为侧视图、下部分为俯视图。已知电子质量为m、电荷量为e,初速度为零,电子圆形轨道的半径为R。穿过电子圆形轨道面积的磁通量Φ随时间t的变化关系如图2所示,在t0时刻后,电子轨道处的磁感应强度为B0,电子加速过程中忽略相对论效应。
|
(1)求在t0时刻后,电子运动的速度大小;
(2)求电子在整个加速过程中运动的圈数;试题篮
()