一个半径r=0.10m的闭合导体圆环,圆环单位长度的电阻R0=1.0×10﹣2Ω/m.如图a所示,圆环所在区域存在着匀强磁场,磁场方向垂直圆环所在平面向外,磁感应强度大小随时间变化情况如图b所示.
(1)分别求在0~0.3s和0.3s~0.5s 时间内圆环中感应电动势的大小;
(2)分别求在0~0.3s和0.3s~0.5s 时间内圆环中感应电流的大小,并在图c中画出圆环中感应电流随时间变化的i﹣t图象(以线圈中逆时针电流为正,至少画出两个周期);
(3)求出导体圆环中感应电流的有效值.
一般在微型控制电路中,由于电子元件体积很小,直接与电源连接会影响电路精度,所以采用“磁”生“电”的方法来提供大小不同的电流。在某原件工作时,其中一个面积为S=4×10-4m2,匝数为10匝,每匝电阻为0.02Ω的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度大小B随时间t变化的规律如左图所示。求
(1)在开始的2s内,穿过单匝线圈的磁通量变化量;
(2)在开始的3s内,线圈产生的热量;
(3)小勇同学做了如右图的实验:将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线是绝缘的,你认为耳机中会有电信号吗?写出你的观点,并说明理由。
如图所示,宽度为L的金属框架竖直固定在绝缘地面上,框架的上端接有一特殊的电子元件,如果将其作用等效成一个电阻,则其阻值与其两端所加的电压成正比,即等效电阻R=kU,式中k为恒量。框架上有一质量为m的金属棒水平放置,金属棒与框架接触良好无摩擦,离地高为h,磁感应强度为B的匀强磁场与框架平面相垂直,将金属棒由静止释放,金属棒沿框架向下运动。不计金属棒及框架电阻,问:
⑴金属棒运动过程中,流过金属棒的电流多大?方向如何?
⑵金属棒经多长时间落到地面?金属棒下落过程中整个电路消耗的电能为多少?
如图甲,单匝圆形线圈c与电路连接,电阻R2两端与平行光滑金属直导轨p1e1f1、p2e2f2连接.垂直于导轨平面向下、向上有矩形匀强磁场区域Ⅰ、Ⅱ,它们的边界为e1e2,区域Ⅰ中垂直导轨并紧靠e1e2平放一导体棒ab.两直导轨分别与同一竖直平面内的圆形光滑绝缘导轨o1、o2相切连接,o1、o2在切点f1、f2处开有小口可让ab进入,ab进入后小口立即闭合.已知:o1、o2的直径和直导轨间距均为d,c的直径为2d;电阻R1、R2的阻值均为R,其余电阻不计;直导轨足够长且其平面与水平面夹角为,区域Ⅰ的磁感强度为B0.重力加速度为g.在c中边长为d的正方形区域内存在垂直线圈平面向外的匀强磁场,磁感强度B随时间t变化如图乙所示,ab在t=0~内保持静止.
(1)求ab静止时通过它的电流大小和方向;
(2)求ab的质量m;
(3)设ab进入圆轨道后能达到离f1f2的最大高度为h,要使ab不脱离圆形轨道运动,求区域Ⅱ的磁感强度B2的取值范围并讨论h与B2的关系式.
如图所示,四条水平虚线等间距地分布在同一竖直面上,间距为h.在Ⅰ、Ⅱ两区间分布着完全相同、方向水平向里的磁场,磁感应强度大小按B-t图变化(图中B0已知).现有一个长方形金属线框ABCD,质量为m,电阻为R,AB=CD=L,AD=BC=2h.用一轻质细线把线框ABCD竖直悬挂着,AB边恰好在Ⅰ区的正中央.t0(未知)时刻细线恰好松弛,之后立即剪断细线,当CD边到达M3N3时线框恰好匀速运动.(空气阻力不计,g=10m/s2)求:
(1)t0的值;
(2)线框AB边到达M2N2时的速率v;
(3)从剪断细线到整个线框通过两个磁场区的过程中产生的电能有多少?
如下图所示,一水平放置的平行导体框宽度L=0.5m,接有R=0.2Ω的电阻,磁感应强度B=0.4T的匀强磁场垂直导轨平面方向向下,现有一导体棒ab跨放在框架上,并能无摩擦地沿框架滑动,框架及导体棒ab电阻都不计,当ab以v=4.0m/s的速度向右匀速滑动时,试求:
(1)导体棒ab上的感应电动势E的大小及感应电流的方向;
(2)要维持ab向右匀速运动,作用在ab上的水平外力F应为多少?
(3)电阻R上产生的热功率P多大?
如图所示,电阻为R的长直螺线管,其两端通过电阻可忽略的导线相连接。一个质量为m的小条形磁铁A从静止开始落入其中,经过一段距离后以速度v做匀速运动。假设小磁铁在下落过程中始终沿螺线管的轴线运动且无翻转。
(1)定性分析说明:小磁铁的磁性越强,最后匀速运动的速度就越小;
(2)小磁铁做匀速运动时在回路中产生的感应电动势约为多少?
一个匝数为1 000的金属圈所包围的面积为0.25 m 2 的闭合线圈平面与均匀分布的磁场的磁感线的方向垂直,该磁场的磁感应强度随时间变化的规律如图所示.画出0—4×10 -2 s内的感应电动势的图象,标明感应电动势的大小.
轻质细线吊着一质量为m=3kg,边长为L=1m、匝数n=10的正方形线圈总电阻为r=1Ω.在框的中间位置以下区域分布着矩形匀强磁场,如图甲所示.磁场方向垂直纸面向里,大小随时间变化如图乙所示.求:
(1)请判断全过程线圈中产生的感应电流的方向?
(2)线圈的电功率;
(3)请通过定量计算说明绳子张力的变化情况,并判别是否存在轻质细线的拉力为0的时刻,并说明理由。
一电阻为R的金属圆环,放在匀强磁场中,磁场与圆环所在平面垂直,如图(a)所示,已知通过圆环的磁通量随时间t的变化关系如图(b)所示,图中的最大磁通量和变化周期T都是已知量,求:
(1)在t=0到t= T/4的时间内,通过金属圆环横截面的电荷量q
(2)在t=0到t=2T的时间内,金属环所产生的电热Q.
在如图 (a)所示的虚线框内有匀强磁场,设图示磁场方向为正,磁感应强度随时间变化规律如图(b)所示.边长为l,总电阻为R的正方形线框abcd有一半处在磁场中且固定,磁场方向垂直于线框平面,在0~T时间内,求:
(1)线框中电流的大小和方向;
(2)线框ab边的生热。
(本题10分)如图所示,在磁感应强度B=0.2 T、方向与纸面垂直的匀强磁场中,有水平放置的两平行导轨ab、cd,其间距l=50 cm,a、c间接有电阻R.现有一电阻为r的导体棒MN跨放在两导轨间,并以v=10 m/s的恒定速度向右运动,a、c间电压为0.8 V,且a点电势高.其余电阻忽略不计.问:
(1)导体棒产生的感应电动势是多大?
(2)通过导体棒电流方向如何?磁场的方向是指向纸里,还是指向纸外?
(3)R与r的比值是多少?
面积S = 0.2m2、n = 100匝的圆形线圈,处在如图所示的磁场内,磁感应强度B随时间t变化的规律是B = 0.02t,R = 3Ω,C = 30μF,线圈电阻r = 1Ω,其余导线电阻不计,求:
(1)通过R的电流大小和方向.
(2)电容器C所带的电荷量.
如图所示的装置中,线圈和线框都置于竖直平面内,线圈的面积S=1×104cm2,线圈中磁感应强度B1的变化是均匀的.线框中的磁场是匀强磁场,磁感应强度B2=0.2T.ab与线框都是裸导线且接触面光滑,ab可在线框上滑动,它的长度为L=10cm,质量m=4g,闭合电路的总电阻R=0.5Ω,不计一切摩擦,g=10m/s2.试求:
(1)若要使ab能处于静止状态,B1的大小应该是减弱还是增强?
(2)当ab恰好处于静止状态时B1的变化率为多大?
如图甲,电阻为R=2Ω的金属线圈与一平行粗糙轨道相连并固定在水平面内,轨道间距为d=0.5m,虚线右侧存在垂直于纸面向里的匀强磁场,磁感应强度为B1=0.1T,磁场内外分别静置垂直于导轨的金属棒P和Q,其质量m1=m2=0.02kg,电阻R1= R2=2Ω.t=0时起对左侧圆形线圈区域施加一个垂直于纸面的交变磁场B2,使得线圈上产生如图乙所示的交变电流(从M端流出时为电流正方向),整个过程两根金属棒都没有滑动,不考虑P和Q电流的磁场以及导轨电阻.取重力加速度g=10m/s2,
(1)若第1s内线圈区域的磁场B2正在减弱,则其方向应是垂直纸面向里还是向外?
(2)假设最大静摩擦力等于滑动摩擦力,金属棒与导轨间的滑动摩擦因数至少应是多少?
(3)求前4s内回路产生的总焦耳热.
试题篮
()