如图所示,在倾角为θ=30°的斜面上,固定一宽L=0.25m的平行金属导轨,在导轨上端接入电源和变阻器.电源电动势E=12V,内阻r=1.0Ω一质量m=20g的金属棒ab与两导轨垂直并接触良好.整个装置处于磁感强度B=0.80T、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g=10m/s2,要保持金属棒在导轨上静止,求:
(1)金属棒所受到的安培力;
(2)通过金属棒的电流;
(3)滑动变阻器R接入电路中的阻值.
如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L=0.5m,上端接有阻值R=0.3Ω的电阻.匀强磁场的磁感应强度大小B=0.4T,磁场方向垂直导轨平面向上.一质量m=0.2kg,电阻r=0.1Ω的导体棒MN,在平行于导轨的外力F作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d=9m时,电阻R上消耗的功率为P=2.7W.其它电阻不计, g取10 m/s2.求:
(1)此时通过电阻R上的电流;
(2)这一过程通过电阻R上的电荷量q;
(3)此时作用于导体棒上的外力F的大小.
电磁阻尼制动是一种利用电磁感应原理工作的新型制动方式,它的基本原理如图甲所示。水平面上固定一块铝板,当一竖直方向的条形磁铁在铝板上方几毫米高度上水平经过时,铝板内感应出的电流会对磁铁的运动产生阻碍作用。电磁阻尼制动是磁悬浮列车在高速运行时进行制动的一种方式,某研究所制成如图乙所示的车和轨道模型来定量模拟磁悬浮列车的制动过程。车厢下端安装有电磁铁系统,能在长为L1=0.6m,宽L2=0.2m的矩形区域内产生竖直方向的匀强磁场,磁感应强度可随车速的减小而自动增大(由车内速度传感器控制),但最大不超过B1=2T,将铝板简化为长大于L1,宽也为L2的单匝矩形线圈,间隔铺设在轨道正中央,其间隔也为L2,每个线圈的电阻为R1=0.1Ω,导线粗细忽略不计。在某次实验中,模型车速度为v0=20m/s时,启动电磁铁系统开始制动,车立即以加速度a1=2m/s2做匀减速直线运动,当磁感应强度增加到B1时就保持不变,直到模型车停止运动。已知模型车的总质量为m1=36kg,空气阻力不计。不考虑磁感应强度的变化引起的电磁感应现象以及线圈激发的磁场对电磁铁产生磁场的影响。
(1)电磁铁的磁感应强度达到最大时,模型车的速度v1为多大?
(2)模型车的制动距离为多大?
(3)某同学受到上述装置的启发,设计了进一步提高制动效果的方案如下,将电磁铁换成多个并在一起的永磁铁组,两个相邻的磁铁磁极的极性相反,且将线圈改为连续铺放,相邻线圈接触紧密但彼此绝缘,如图丙所示,若永磁铁激发的磁感应强度恒定为B2,模型车质量m1及开始减速的初速度v0均不变,试通过必要的公式分析这种设计在提高制动能力上的合理性。
某同学对某种抽水泵中的电磁泵模型进行了研究。如图电磁泵是一个长方体,ab边长为L1,左右两侧面是边长为L2的正方形,在泵头通入导电剂后液体的电阻率为ρ,泵体所在处有方向垂直向外的磁场B,把泵体的上下两表面接在电压为U(内阻不计)的电源上,理想电流表示数为I,若电磁泵和水面高度差为h,不计水在流动中和管壁之间的阻力,重力加速度为g。则
A.泵体上表面应接电源正极 |
B.电源提供的电功率为U2L1/ρ |
C.电磁泵不加导电剂也能抽取不导电的纯水 |
D.在t时间内抽取水的质量为m,这部分水离开泵时的动能为 |
如图,用粗细均匀的电阻丝折成边长为L的平面等边三角形框架,每个边长L的电阻均为r,三角形框架的两个顶点与一电动势为E、内阻为r的电源相连接,垂直于框架平面有磁感应强度为B的匀强磁场,则三角形框架受到的安培力的合力大小为( )
A.0 | B. | C. | D. |
如图所示,两平行金属导轨轨道MN、MʹNʹ间距为L,其中MO和MʹOʹ段与金属杆间的动摩擦因数μ=0.4,ON和OʹNʹ段光滑且足够长,两轨道的交接处由很小的圆弧平滑连接,导轨电阻不计,左侧接一阻值为R的电阻和电流传感器,轨道平面与水平面的夹角分别为α=53°和β=37°。区域PQPʹQʹ内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为d,PPʹ的高度为h2=0.3m,。现开启电流传感器,同时让质量为m、电阻为r的金属杆ab自高h1=1.5m处由静止释放,金属杆与导轨垂直且保持接触良好,电流传感器测得初始一段时间内的I t(电流与时间关系)图象如图乙所示(图中I0为已知)。求:
(1)金属杆第一次进入磁场区域时的速度大小v1(重力加速度为g取10m/s2);
(2)匀强磁场的磁感应强度B和金属杆第二次进入磁场区域时的速度大小(此后重力加速度取g);
(3)电阻R在t1 t3时间内产生的总热能QR(用v1和其它已知条件表示)。
如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6 cos37°=0.8)
(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;
(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;
(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。
(18分)如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.
(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.
如图所示,光滑导轨与水平面成θ角,导轨宽L.匀强磁场磁感应强度为B.金属杆长也为L,质量为m,水平放在导轨上.当回路总电流为I1时,金属杆正好能静止.求:
(1)B至少多大?这时B的方向如何?
(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
如图所示,金属导轨
和
,
与
平行且间距为
,所在平面与水平面夹角为
,
、
连线与
垂直,
、
间接有阻值为R的电阻;光滑直导轨
和
在同一水平面内,与
的夹角都为锐角
。均匀金属棒
和
质量均为
,长均为
,
棒初始位置在水平导轨上与
重合;
棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为
(
较小),由导轨上的小立柱1和2阻挡而静止。空间有方向竖直的匀强磁场(图中未画出)。两金属棒与导轨保持良好接触。不计所有导轨和
棒的电阻,
棒的阻值为
,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为
。
(1)若磁感应强度大小为B,给 棒一个垂直于 、水平向右的速度 ,在水平导轨上沿运动方向滑行一段距离后停止, 棒始终静止,求此过程 棒上产生的热量;
(2)在(1)问过程中, 棒滑行距离为 ,求通过 棒某横截面的电荷量;
(3)若 棒以垂直于 的速度 在水平导轨上向右匀速运动,并在 位置时取走小立柱1和2,且运动过程中 棒始终静止。求此状态下最强磁场的磁感应强度及此磁场下 棒运动的最大距离。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
截流长直导线周围磁场的磁感应强度大小为,式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示。开始时MN内不同电流,此时两细线内的张力均为。当MN通以强度为的电流时,两细线内的张力均减小为,当MN内的电流强度变为时,两细线的张力均大于
(1)分别指出强度为的电流和方向;
(2)MN分别通以强度为电流时,线框受到的安培力大小之比。
如图()所示,平行长直金属导轨水平放置,间距,导轨右端接有阻值的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域内有方向竖直向下的匀强磁场,连线与导轨垂直,长度也为,从0时刻开始,磁感应强度的大小随时间变化,规律如图()所示;同一时刻,棒从导轨左端开始向右匀速运动,后刚好进入磁场,若使棒在导轨上始终以速度做直线运动,求:
⑴棒进入磁场前,回路中的电动势;
⑵棒在运动过程中受到的最大安培力,以及棒通过三角形区域时电流与时间的关系式。
试题篮
()