如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.
(1)求金属棒沿导轨由静止开始下滑时的加速度大小.
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8 W,求该速度的大小.
(3)在上问中,若R=2 Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.
(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)
如图所示,竖直悬挂的弹簧下端栓有导体棒ab,ab无限靠近竖直平行导轨的内侧、与导轨处于竖直向上的磁场中,导体棒MN平行导轨处于垂直导轨平面的磁场中,当MN以速度v向右匀速运动时,ab恰好静止,弹簧无形变,现使v减半仍沿原方向匀速运动,ab开始沿导轨下滑,磁场大小均为B,导轨宽均为L,导体棒ab、MN质量相同、电阻均为R,其他电阻不计,导体棒与导轨接触良好,弹簧始终在弹性范围内,最大静摩擦力等于滑动摩擦力,则
A.MN中电流方向从M到N |
B.ab受到的安培力垂直纸面向外 |
C.ab开始下滑直至速度首次达峰值的过程中,克服摩擦产生热量 |
D.ab速度首次达到峰值时,电路的电热功率为 |
如图甲所示,固定在水平桌边上的“ ”型平行金属导轨足够长,倾角为53º,间距L=2m,电阻不计;导轨上两根金属棒ab、cd的阻值分别为R1=2Ω,R2=4Ω,cd棒质量m1=1.0kg,ab与导轨间摩擦不计,cd与导轨间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,整个导轨置于磁感应强度B=5T、方向垂直倾斜导轨平面向上的匀强磁场中。现让ab棒从导轨上某处由静止释放,当它刚要滑出导轨时,cd棒刚要开始滑动;g取10m/s2,sin37 º ="cos53" º =0.6,cos37 º =" sin53" º =0.8。
(1)在乙图中画出此时cd棒的受力示意图,并求出ab棒的速度;
(2)若ab棒无论从多高的位置释放,cd棒都不动,则ab棒质量应小于多少?
(3)假如cd棒与导轨间的动摩擦因数可以改变,则当动摩擦因数满足什么条件时,无论ab棒质量多大、从多高位置释放,cd棒始终不动?
如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中, O为M、N连线中点,连线上a、b两点关于O点对称。导线均通有大小相等、方向向上的电流。已知长直导线在周围产生的磁场的磁感应强度,式中k是常数、I是导线中电流、r为点到导线的距离。一带正电的小球
以初速度v0从a点出发沿连线运动到b点。关于上述过程,下列说法正确的是( )
A.小球先做加速运动后做减速运动 |
B.小球一直做匀速直线运动 |
C.小球对桌面的压力先减小后增大 |
D.小球对桌面的压力一直在增大 |
如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m,R是连接在导轨一端的电阻,ab是跨接在导轨上质量为m=0.1kg的导体棒。从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好。图乙是棒的v-t图象,其中OA段是直线,AC是曲线,DE是曲线图象的渐进线,小型电动机在12s末达到额定功率P=4.5W,此后保持功率不变。除R外,其余部分电阻均不计,g=10m/s2,求:
(1)ab在0~12s内的加速度大小;
(2)ab与导轨间的动摩擦因数;
(3)电阻R的阻值;
(4)若t=17s时,导体棒ab达到最大速度,从0~17s内的位移为100m,求12~17s内,R上产生的热量。
如图所示,两平行的光滑金属导轨安装在一倾角的光滑绝缘斜面上,导轨间距L,导轨电阻忽略不计且足够长,一宽度为d的有界匀强磁场垂直于斜面向上,磁感应强度为B。另有一长为2d的绝缘杆将一导体棒和一边长为d(d <L)的正方形线框连在一起组成的固定装置,总质量为m,导体棒中通有大小恒为I的电流,将整个装置置于导轨上。开始时导体棒恰好位于磁场的下边界处,由静止释放后装置沿斜面向上运动,当线框的下边运动到磁场的上边界MN处时装置的速度恰好为零,之后装置将向下运动,然后再向上运动,经过若干次往返后,最终整个装置将在斜面上作稳定的往复运动。已知B=2.5T,I=0.8A,L=0.5m,m=0.04kg,d=0.38m,取g=10 m/s2,sin37°=0.6,cos37°=0.8。求:
(1)装置被释放的瞬间,导线棒加速度的大小;
(2)从装置被释放到线框下边运动到磁场上边界MN处的过程中,线框中产生的热量;
(3)装置作稳定的往复运动后,导体棒的最高位置与最低位置之间的距离。
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m。导轨电阻忽略不计,其间接有固定电阻R=0.40Ω.导轨上停放一质量为m=0.10kg、电阻r=0.20Ω的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下。利用一外力F沿水平方向拉金属杆ab,使之由静止开始做匀加速直线运动,电压传感器可将R两端的电压U即时采集并输入电脑,并获得U随时间t的关系如图乙所示。求:
(1)金属杆加速度的大小;
(2)第2s末外力的瞬时功率。
如图所示,在倾角为37°的光滑斜面上有一根长为0.4 m,质量为6×10-2 kg的通电直导线,电流强度I=1 A,方向垂直于纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T,方向竖直向上的磁场中.设t=0时,B=0,则需要多长时间斜面对导线的支持力为零?(g取10 m/s2)
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
截流长直导线周围磁场的磁感应强度大小为,式中常量k>0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根等长的轻质绝缘细线静止地悬挂,如图所示。开始时MN内不同电流,此时两细线内的张力均为。当MN通以强度为的电流时,两细线内的张力均减小为,当MN内的电流强度变为时,两细线的张力均大于
(1)分别指出强度为的电流和方向;
(2)MN分别通以强度为电流时,线框受到的安培力大小之比。
如图()所示,平行长直金属导轨水平放置,间距,导轨右端接有阻值的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域内有方向竖直向下的匀强磁场,连线与导轨垂直,长度也为,从0时刻开始,磁感应强度的大小随时间变化,规律如图()所示;同一时刻,棒从导轨左端开始向右匀速运动,后刚好进入磁场,若使棒在导轨上始终以速度做直线运动,求:
⑴棒进入磁场前,回路中的电动势;
⑵棒在运动过程中受到的最大安培力,以及棒通过三角形区域时电流与时间的关系式。
如图所示,空间存在着与圆台母线垂直向外的磁场,各处的磁感应强度大小均为B,圆台母线与竖直方向的夹角为θ。一个质量为m、半径为r的通电匀质金属环位于圆台底部,0~t时间内环中电流大小恒定为I,由静止向上运动经过时间t后撤去该恒定电流并保持圆环闭合,圆环上升的最大高度为H。已知重力加速度为g,磁场的范围足够大。在圆环向上运动的过程中,下列说法正确的是
A.圆环先做加速运动后做减速运动 |
B.在时间t内安培力对圆环做功为mgH |
C.圆环先有扩张后有收缩的趋势 |
D.圆环运动的最大速度为 |
试题篮
()