某种加速器的理想模型如题1图所示:两块相距很近的平行小极板中间各开有一小孔、,两极板间电压的变化图像如图2所示,电压的最大值为、周期为,在两极板外有垂直纸面向里的匀强磁场。若将一质量为、电荷量为的带正电的粒子从板内孔处静止释放,经电场加速后进入磁场,在磁场中运动时间后恰能再次从 孔进入电场加速。现该粒子的质量增加了。(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)
(1)若在=0时刻将该粒子从板内孔处静止释放,求其第二次加速后从孔射出时的动能;
(2)现在利用一根长为的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使题15-1图中实线轨迹(圆心为)上运动的粒子从孔正下方相距处的孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;
(3)若将电压的频率提高为原来的2倍,该粒子应何时由板内孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?
一根通有电流的长直导线竖直放置,另有一矩形导线框的电流平面放在竖直平面内,通有如图所示得电流。到平面得距离为,边长,,且和两边所在处的磁感应强度大小均为(由产生)。求和所受安培力的大小,并说明方向。
汤姆生在测定阴极射线比荷时采用的方法是利用电场、磁场偏转法,即测出阴极射线在匀强电场或匀强磁场中穿过一定距离时的偏角。设竖直向下的匀强电场的电场强度为E,阴极射线垂直电场射入、穿过水平距离L后的运动偏角为θ(θ较小,θ≈tanθ)(如图A);以匀强磁场B代替电场,测出经过一段弧长L的运动偏角为φ(如图B),已知阴极射线入射的初速度相同,试以E、B、L、θ、φ表示阴极射线粒子的比荷q/m的关系式。(重力不计)
电流表的矩形线圈数匝。矩形线圈处在磁场中的两条边长,另两条边长为。指针每转1度角,螺旋弹簧产生的阻碍力矩,指针的最大偏转角为80°,已知电流表磁极间沿辐射方向分布的匀强磁场的磁感强度(如图)。求该电流表的满偏电流值(即电流量程)多大?
( 2012年2月浙江六校联考)如图所示,质量为m、电荷量为e的质子以某一初动能Ek从坐标原点O沿x轴正方向进入场区,若场区仅存在平行于y轴向上的匀强电场时,质子通过P(d ,d)点时的动能为5Ek;若场区仅存在垂直于xoy平面的匀强磁场时,质子也能通过P点。不计质子的重力。设上述匀强电场的电场强度大小为E、匀强磁场的磁感应强度大小为B,则下列说法中正确的是
A. | B. |
C. | D. |
如图所示,有一电子束从点a处以一定的水平速度飞向竖直放置的荧光屏,将垂直击中荧光屏上的点b,已知电子的质量为m,电量为q.
(1)若在电子束运行途中加一半径为R的圆形磁场,磁感应强度为B,方向垂直于纸面向里,圆心O在点a、b连线上,点O距荧光屏距离为L,为使电子束仍击中荧光屏上的点b,可加一个场强为E的匀强电场,指出此匀强电场的方向和范围,并求出电子束的速度.
(2)现撤去电场,电子束以原速度沿原来方向从a点发射,运动方向在磁场中偏转后击中荧光屏上的点c.求b、c间的距离.
如图所示,空间某平面内有一条折线是磁场的分界线,在折线的两侧分布着方向相反、与平面垂直的匀强磁场,磁感应强度大小都为B.折线的顶角∠A=90°,P、Q是折线上的两点,AP=AQ=L.现有一质量为m、电荷量为q的带负电微粒从P点沿PQ方向射出,不计微粒的重力.
(1)若P、Q间外加一与磁场方向垂直的匀强电场,能使速度为v0射出的微粒沿PQ直线运动到Q点,则场强为多大?方向如何?
(2)撤去电场,为使微粒从P点射出后,途经折线的顶点A而到达Q点,求初速度v应满足什么条件?
(3)求第(2)中微粒从P点到达Q点所用时间的最小值.
如图,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于oxy平面向里,大小为B。现有一质量为m电量为q的带电粒子,在x轴上到原点的距离为x0的P点,以平行于y轴的初速度射入此磁场, 在磁场作用下沿垂直于y轴的方向射出此磁场。不计重力的影响。由这些条件可知
A.能确定粒子通过y轴时的位置 |
B.能确定粒子速度的大小 |
C.能确定粒子在磁场中运动所经历的时间 |
D.以上三个判断都不对 |
某仪器用电场和磁场来控制电子在材料表面上方的运动,如图所示,材料表面上方矩形区域充满竖直向下的匀强电场,电场宽为;矩形区域充满垂直纸面向里的匀强磁场,磁感应强度为,长为3,宽为;为磁场与电场之间的薄隔离层。一个电荷量为、质量为、初速为零的电子,从点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,时间极短、运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界飞出。不计电子所受重力。
(1)控制电子在材料表面上方运动,最大的电场强度为多少?
(2)若电子以上述最大电场加速,经多长时间将第三次穿越隔离层?
(3)是的中点,若要使电子在、间垂直于飞出,求电子在磁场区域中运动的时间。
下列说法中正确的是( )
A.检验电荷在某处不受电场力的作用,则该处电场强度不一定为零 |
B.一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零 |
C.表征电场中某点电场的强弱,是把一个检验电荷放在该点时受到的电场力与检验电荷本身电荷量的比值 |
D.表征磁场中某点磁场的强弱,是把一小段通电导线放到该点时受到的磁场力与该小段导线长度和电流乘积的比值 |
地面附近,存在着一有界电场,边界MN将某空间分成上下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有竖直向上的匀强电场,在区域Ⅰ中离边界某一高度由静止释放一质量为m的带电小球A,如图甲所示,小球运动的v-t图象如图乙所示,已知重力加速度为g,不计空气阻力,则
A.在t=2.5s时,小球经过边界MN |
B.小球受到的重力与电场力之比为3∶5 |
C.在小球向下运动的整个过程中,重力做的功与电场力做的功大小相等 |
D.在小球运动的整个过程中,小球的机械能与电势能总和先变大再变小 |
利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。
如图所示的矩形区域(边足够长)中存在垂直于纸面的匀强磁场,处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于边且垂于磁场的方向射入磁场,运动到边,被相应的收集器收集,整个装置内部为真空。
已知被加速的两种正离子的质量分别是和,电荷量均为。加速电场的电势差为,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。
(1)求质量为的离子进入磁场时的速率。
(2)当磁感应强度的大小为时,求两种离子在边落点的间距。
(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,可能使两束离子在边上的落点区域交叠,导致两种离子无法完全分离,设磁感应强度大小可调,边长为定值L,狭缝宽度为,狭缝右边缘在A处,离子可以从狭缝各处射入磁场,入射方向仍垂直于边且垂直于磁场。为保证上述两种离子能落在边上并被完全分离,求狭缝的最大宽度。
若粒子刚好能在如图所示的竖直面内做匀速圆周运动,则可以判断
A.粒子运动中机械能守恒 | B.粒子带负电 |
C.只能是逆时针运动 | D.只能是顺时针运动 |
试题篮
()