如图所示,截面为直角三角形的木块置于粗糙的水平地面上,其倾角θ=37°。现有一质量m=1.0 kg的滑块沿斜面由静止下滑,经时间0.40 s沿斜面运动了0.28 m,且该过程中木块处于静止状态。重力加速度g取10 m/s2,求:(sin37°=0.6,cos37°=0.8)
(1)滑块滑行过程中受到的摩擦力大小;
(2)滑块在斜面上滑行的过程中木块受到地面的摩擦力大小及方向。
微波实验是近代物理实验室中的一个重要部分。反射式速调管是一种结构简单、实用价值较高的常用微波器件之一,它是利用电子团与场相互作用在电场中发生振荡来产生微波,其振荡原理与下述过程类似。如图1所示,在虚线MN两侧分布着方向平行于X轴的电场,其电势φ随x的分布可简化为如图2所示的折线。一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动。已知带电微粒质量m=1.0×10-20 kg,带电荷量q=-1.0×10-9 C,A点距虚线MN的距离d1=1.0 cm,不计带电微粒的重力,忽略相对论效应。求:
(1)B点距虚线MN的距离d2;
(2)带电微粒从A点运动到B点所经历的时间t。
如图,正方形单匝均匀线框abcd,边长L=0.4m,每边电阻相等,总电阻R=0.5Ω。一根足够长的绝缘轻质细线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接绝缘物体P,物体P放在一个光滑的足够长的固定斜面上,斜面倾角θ=30°,斜面上方的细线与斜面平行。在正方形线框正下方有一有界的匀强磁场,上边界I和下边界II都水平, 两边界之间距离也是L=0.4m。磁场方向水平,垂直纸面向里,磁感应强度大小B=5T。现让正方形线框的cd边距上边界I的正上方高度h=0.9m的位置由静止释放,且线框在运动过程中始终与磁场垂直,cd边始终保持水平,物体P始终在斜面上运动,线框刚好能以v=3m/S的速度进入匀强磁场并匀速通过匀强磁场区域。释放前细线绷紧,重力加速度g=10m/s2,不计空气阻力。
求:(1)线框的cd边在匀强磁场中运动的过程中,c、d间的电压是多大?
(2)线框的质量m1和物体P的质量m2分别是多大?
(3)在cd边刚进入磁场时,给线框施加一个竖直向下的拉力F使线框以进入磁场前的加速度匀加速通过磁场区域,在此过程中,力F做功W=0.23J,求正方形线框cd边产生的焦耳热是多少?
甲、乙两物体分别做匀加速和匀减速直线运动,已知乙的初速度是甲的初速度的2.5倍,且甲的加速度大小是乙的加速度大小的2倍,经过4s,两者的速度均达到8m/s,则两者的初速度分别为多大?两者的加速度分别为多大?
(14分)
如图所示,水平绷紧的传送带AB长L=6m,始终以恒定速率v1=4m/s运行。初速度大小为v2=6m/s的小物块(可视为质点)从与传送带等高的光滑水平地面上经A点滑上传送带。小物块m=lkg,物块与传送带间动摩擦因数μ=0.4,g取lom/s2。
求:(1)小物块能否到达B点,计算分析说明。
(2)小物块在传送带上运动时,摩擦力产生的热量为多少?
(14分)某些城市交通部门规定汽车在市区某些街道行驶速度不得超过v0=30km/h.一辆汽车在该水平路段紧急刹车时车轮抱死,沿直线滑动一段距离后停止.交警测得车轮在地面上滑行的轨迹长为s0=10m.从手册中查出该车轮胎与地面间的动摩擦因数为μ=0.75,取重力加速度g=10m/s2.
(1)假如你是交警,请你判断汽车是否违反规定,超速行驶(在下面写出判断过程)
(2)目前,有一种先进的汽车制动装置,可保证车轮在制动时不被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时可获得比车轮抱死更大的制动力,从而使刹车距离大大减小.假设汽车安装防抱死装置后刹车制动力恒为f,驾驶员的反应时间为t,汽车的质量为m,汽车行驶的速度为v,试推出刹车距离s(反应距离与制动距离之和)的表达式.
(3)根据刹车距离s的表达式,试分析引发交通事故的原因的哪些
滑草逐渐成为我们浙江一项新兴娱乐活动。某体验者乘坐滑草车运动过程简化为如图所示,滑草车从A点静止滑下,滑到B点时速度大小不变而方向变为水平,再滑过一段水平草坪后从C点水平抛出,最后落在三角形状的草堆上。已知斜坡AB与水平面的夹角θ=37°,长为xAB=15m,水平草坪BC长为xBC=10m。从A点滑到了B点用时3s。该体验者和滑草车的质量m=60kg,运动过程中看成质点,在斜坡上运动时空气阻力不计。(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2)
(1)求滑草车和草坪之间的动摩擦因数;
(2)体验者滑到水平草坪时,恰好受到与速度方向相反的水平恒定风的作用,风速大小为5m/s,已知风的阻力大小F与风速v满足经验公式F=1.2v2。求体验者滑到C点时的速度大小;
(3)已知三角形的草堆的最高点D与C点等高,且距离C点6m,其左顶点E位于C点正下方3m处。在某次滑草过程中,体验者和滑草车离开C点时速度大小为7m/s,无风力作用,空气阻力忽略不计,求体验者和滑草车落到草堆时的动能。
一客运列车匀速行驶,其车轮在轨道间的接缝处会产生周期性的撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.已知每根轨道的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求
(1)客车运行的速度大小;
(2)货车运行加速度的大小.
高速连续曝光照相机可在底片上重叠形成多个图像,现利用这种照相机对某款家用汽车的加速性能进行研究。如图为汽车做匀加速直线运动时的三次曝光照片,照相机每两次曝光的时间间隔为1.0 s,已知该汽车的质量为2000 kg,额定功率为90 kW,假设汽车运动过程中所受的阻力恒为1500N。
(1)试利用上图,求该汽车的加速度;
(2)求汽车所能达到的最大速度是多大?
(3)若汽车由静止以此加速度开始做匀加速直线运动,匀加速运动状态最多能保持多长时间?
如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量相等,均为m,弹簧的劲度系数为k,C为一固定挡板。系统处于静止状态.现开始用沿斜面方向的力F(F未知)拉物块A使之向上做加速度为a的匀加速运动,当物块B刚要离开C时,沿斜面方向的力F(F未知)保持此时的值变为恒力,且此时弹簧与物块A连接处断裂,物块A在恒力作用下继续沿斜面向上运动.重力加速度为g,求:
(1)恒力F的大小;
(2)物块A从断裂处继续前进相同的距离后的速度.
如图一可视为质点的物体,在倾角θ=30°的固定斜面上,向下轻轻一推,它恰好匀速下滑.已知斜面长度为L=5m.求:欲使物体由斜面底端开始,沿斜面冲到顶端,物体上滑时的初速度至少为多大?(g取10m/s2)
如图所示,A和B是两个相同的带电小球,可视为质点,质量均为m,电荷量均为q,A固定在绝缘地面上,B放在它的正上方很远距离的一块绝缘板上,现手持绝缘板使B从静止起以恒定的加速度a(a<g)竖直下落h时,B与绝缘板脱离.静电力常量为k,求:
(1)B刚脱离绝缘板时的动能.
(2)B在脱离绝缘板前的运动过程中,电场力和板的支持力对B做功的代数和W.
(3)B脱离绝缘板时离A的高度H.
如图所示,以8 m/s匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18 m,该车加速时最大加速度大小为2 m/s2,减速时最大加速度大小为5 m/s2.此路段允许行驶的最大速度为12.5 m/s.则:
(1)试分析判断,若汽车加速前进,能否在绿灯熄灭之前确保不超速通过停车线(此过程中汽车可看成质点)?
(2)若汽车减速刹车,能否在到达停车线之前停车?
如图所示,半径=0.4m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量=0.1kg的小球,以初速度=8m/s在水平地面上向左作加速度=4m/s2的匀减速直线运动,运动4m后,冲上竖直半圆环,经过最高点B最后小球落在C点。取重力加速度=10m/s2。求:
(1)小球到达A点时速度大小;
(2)小球经过B点时对轨道的压力大小;
(3)A、C两点间的距离。
如图所示,一个质最为M,长为L的圆管竖直放置,顶端塞有一个质量为m的弹性小球,M=4m,球和管间的滑动摩擦力与最大静摩擦力大小均为4mg,管下端离地面高度H=5m。现让管自由下落,运动过程中管始终保持竖直,落地时向上弹起的速度与落地时速度大小相等,若管第一次弹起上升过程中,球恰好没有从管中滑出,不计空气阻力,重力加速度g=10m/s2。求
(1)管第一次落地弹起刚离开地面时管与球的加速度分别多大?
(2)从管第一次落地弹起到球与管达到相同速度时所用的时间。
(3)圆管的长度L。
试题篮
()