如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道足够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。
(1)求导体棒ab从A下落r/2时的加速度大小。
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和ab进入磁场II时R2上的电功率P2。
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
如图所示,边长为L的正方形金属框,质量为m,电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外.磁场随时间变化规律为B=kt(k>0),已知细线所能承受的最大拉力为2mg,求:
(1)回路中的感应电流大小及方向
(2)从t=0开始,经多长时间细线会被拉断
如图甲所示, 两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示.(取重力加速度g=10m/s2)求:
(1)t=10s时拉力的大小.(2)t=10s时电路的发热功率.
如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25W的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g取10 m/s2.求:
(1)线框受到的拉力F的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)线框在斜面上运动的过程中产生的焦耳热Q.
如图甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0m,NQ两端连接阻值R=3.0Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=300。一质量m=0.20kg,阻值r=0.50Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60kg的重物相连。细线与金属导轨平行。金属棒沿导轨向上滑行的速度v与时间t之间的关系如图乙所示,已知金属棒在0~0.3s内通过的电量是0.3~0.6s内通过电量的1/3,g=10m/s2,求:
(1)金属棒的最大加速度
(2)磁感应强度的大小
(3)0~0.3s内棒通过的位移;
(4) 金属棒在0~0.6s内产生的热量。
如图所示,一矩形金属框架与水平面成=37°角,宽L =0.4m,上、下两端各有一个电阻R0 =2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框平面的方向有一向上的匀强磁场,磁感应强度B=1.0T.ab为金属杆,与框架良好接触,其质量m=0.1Kg,杆电阻r=1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R0产生的热量Q0="0." 5J.(sin37°=0.6,cos37°=0.8)求:
(1)流过R0的最大电流;
(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;
(3)在时间1s内通过杆ab横截面积的最大电量.
如图所示,质量为、电荷量为的小球(视为质点)通过长为的细线悬挂于O点,以O点为中心在竖直平面内建立直角坐标系xOy,在第2、3象限内存在水平向左的匀强电场,电场强度大小为 (式中为重力加速度) 。
(1)把细线拉直,使小球在第4象限与x正方向成角处由静止释放,要使小球能沿原路返回至出发点,的最小值为多少?
(2)把细线拉直,使小球从处以初速度竖直向下抛出,要使小球能在竖直平面内做完整的圆周运动,则的最小值为多少?
如图所示,水平放置的平行金属导轨,相距L="0.50" m,左端接一电阻R ="0." 20Ω,磁感应强度B="0.40" T,方向垂直于导轨平面的匀强磁场,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v="4.0" m/s的速度水平向右匀速滑动时,求:
(1)ab棒中感应电动势的大小,并指出a、b哪端电势高?
(2)回路中感应电流的大小;
(3)维持ab棒做匀速运动的水平外力F的大小。
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距lm, 导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;
(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.
如图甲所示,一正方形单匝线框abcd放在光滑绝缘水平面上,线框边长为L、质量为m、电阻为R.该处空间存在一方向竖直向下的匀强磁场,其右边界MN平行于ab,磁感应强度B随时间t变化的规律如图乙所示,0~t0时间内B随时间t均匀变化,t0时间后保持B=B0不变.
(1)若线框保持静止,则在时间t0内产生的焦耳热为多少?
(2)若线框从零时刻起,在一水平拉力作用下由静止开始做匀加速直线运动,加速度大小为a,经过时间t0线框cd边刚要离开边界MN.则在此过程中拉力做的功为多少?
(3)在(2)的情况下,为使线框在离开磁场的过程中,仍以加速度a做匀加速直线运动,试求线框在离开磁场的过程中水平拉力F随时间t的变化关系.
如图所示,宽度L=1m的足够长的U形金属框架水平放置,框架处在竖直向上的匀强磁场中,磁感应强度B=1T,框架导轨上放一根质量m=0.2kg、电阻R=1.0Ω的金属棒ab,棒ab与导轨间的动摩擦因数μ=0.5,现用功率恒为6W的牵引力F使棒从静止开始沿导轨运动(ab棒始终与导轨接触良好且垂直)。ab棒从静止开始经过时间t=1.5s获得稳定速度,此过程中,通过棒的电量q=2.8C(框架电阻不计,g取10m/s2)。问:
(1)ab棒达到的稳定速度多大?
(2)棒的电阻R产生热量多少?
如图18所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为x.一质量为m、电阻为r的金属棒MN置于轨道上,与导轨垂直且接触良好,受到水平拉力F=(0.5v+0.4) N(v为某时刻金属棒运动的瞬时速度)的作用,从磁场的左边界由静止开始运动.已知l=1 m,m=1 kg,R=0.3 Ω,r=0.2 Ω,x=0.8 m,如果测得电阻R两端的电压U随着时间是均匀增大的,那么:
(1)分析并说明该金属棒在磁场中做何种运动;
(2)金属棒到达ef处的速度应该有多大;
(3)分析并求解磁感应强度B的大小.
如图所示,P、Q为水平面内平行放置的光滑金属长直导轨,间距为L1,处在竖直向下、磁感应强度大小为B1的匀强磁场中,一导体杆ef垂直于P、Q放在导轨上,在外力作用下向左做匀速直线运动.质量为m、每边电阻均为r、边长为L2的正方形金属框abcd置于竖直平面内,两顶点a、b通过细导线与导轨相连,磁感应强度大小为B2的匀强磁场垂直金属框向里,金属框恰好处于静止状态,不计其余电阻和细导线对a、b点的作用力.
(1)通过ab边的电流Iab是多大?
(2)导体杆ef的运动速度v是多大?
如图所示,光滑的长平行金属导轨宽度d=50cm,导轨所在的平面与水平面夹角=37°,导轨上端电阻R=0.8,其他电阻不计,导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T。金属棒ab从上端由静止开始下滑,金属棒ab的质量m=0.1kg。 (sin37°=0.6,g=10m/s2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s时导体棒的加速度;
如图所示,水平地面上方矩形虚线区域内有垂直纸面向里的匀强磁场,两个闭合线圈l和Ⅱ分别用同样的导线绕制而成,其中I是边长为L的正方形,Ⅱ是长2L、宽L的矩形.将两线圈从图示位置同时由静止释放。线圈下边进入磁场时,I立即做一段时间的匀速运动.已知两线圈在整个运动过程中,下边始终平行于磁场上边界,不计空气阻力.则
A.下边进入磁场时,Ⅱ也立即做一段时问的匀速运动 |
B.从下边进入磁场开始的一段时间内.线圈Ⅱ做加速度不断减小的加速运动 |
C.从下边进入磁场开始的一段时间内,线圈Ⅱ做加速度不断减小的减速运动 |
D.线圈Ⅱ先到达地面 |
试题篮
()