如图所示,水平绝缘轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m。轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×104N/C。现有一电荷量q=+1.0×10 4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能够通过最高点C,已知带电体与水平轨道间的动摩擦因数μ=0.50,重力加速度g=10m/s2。求:
(1)带电体运动到圆形轨道的最低点B时,圆形轨道对带电体支持力的大小;
(2)带电体在水平轨道上的释放点P到B点的距离;
(3)带电体第一次经过C点后,落在水平轨道上的位置到B点的距离。
如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形,两个匀强电场相距为L。在该区域AB边的中点处由静止释放电子,不计电子所受重力。
(1)确定电子离开ABCD区域时的位置坐标。
(2)若已知电子电荷量为e、质量为m,求电子由静止释放到离开ABCD区域所经历的时间。
如图所示,竖直平面内有两光滑金属圆轨道,平行正对放置,直径均为d,电阻不计。某金属棒长L、质量m、电阻r,放在圆轨道最低点MM' 处,与两导轨刚好接触。两圆轨道通过导线与电阻R相连。空间有竖直向上的匀强磁场,磁感应强度为B。现使金属棒获得垂直纸面向里的初速度vo,当其沿圆轨道滑到最高点NN' 处时,对轨道恰无压力(滑动过程中金属棒与圆轨道始终接触良好)。重力加速度为g,求:
(1)金属棒刚获得垂直纸面向里的初速度时,判断电阻R中电流的方向;
(2)金属棒到达最高点NN' 处时,电路中的电功率;
(3)金属棒从MM' 处滑到NN' 处的过程中,电阻R上产生的焦耳热。
质量为m、电荷量为q的带负电粒子自静止开始释放,经M、N板间的电场加速后,从A点垂直于磁场边界射入宽度为d的匀强磁场中,该粒子离开磁场时的位置P偏离入射方向的距离为L,如图所示.已知M、N两板间的电压为U,粒子的重力不计.求:匀强磁场的磁感应强度B.
如图所示,A、B为两块足够大的相距为d的平行金属板,接在电压为U的电源上。在A板的中央P点放置一个电子发射源。可以向各个方向释放电子,射出的初速度为v,电子打在B板上的区域面积为S,(不计电子的重力),试求电子的比荷
如图所示,竖直面内有一绝缘轨道,AB部分是光滑的四分之一圆弧,圆弧半径R=0.5m,B处切线水平,BC部分为水平粗糙直轨道。有一个带负电的小滑块(可视为质点)从A点由静止开始下滑,运动到直轨道上的P处刚好停住。小滑块的质量m=1kg,带电量为保持不变,滑块小轨道BC部分间的动摩擦因数为μ=0.2,整个空间存在水平向右的匀强电场,电场强度大小为E=4.0×102N/C.(g=10m/s2)
(1)求滑块到达B点瞬间的速度大小
(2)求滑块到达B点瞬间对轨道的压力大小。
(3)求BP间的距离,
分)如图所示,用长为的绝缘细线悬挂一带电小球,小球质量为m。现加一水平向右、场强为E的匀强电场,平衡时小球静止于A点,细线与竖直方向成θ角。
(1)求小球所带电荷量的大小;
(2)若将细线剪断,小球将在时间t内由A点运动到电场中的P点(图中未画出),求A、P两点间的距离;
(3)求A、P两点间电势差的
如图所示,空间存在着电场强度E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L=0.5 m的绝缘细线一端固定于O点,另一端拴着质量m=0.5 kg电荷量q=4×10-2 C的小球。现将细线拉至水平位置,将小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂。取g=10 m/s2。求:
(1)小球的电性;
(2)细线能承受的最大拉力值。
如图所示,在铅板A上放一个放射源C可向各个方向射出速率为的
射线,B为金属网,A、B连接在电路上,电源电动势为
,内阻为
,滑动变阻器总阻值为
,图中滑动变阻器滑片置于中点,A、B间距为d,M为荧光屏(足够大),它紧挨者金属网外侧,已知
粒子的质量为
,不计
射线所形成的电流对电路的影响,求:
(1)闭合开关S后,AB间的场强的大小是多少?
(2)粒子到达金属网B的最长时间?
(3)切断开关S,并撤去金属网B,加上垂直纸面向内、范围足够大的匀强磁场,磁感应强度大小为B,设加上B后粒子仍能到达荧光屏。这时在竖直方向上能观察到荧光屏亮区的长度是多少?
如图,直线MN 上方有平行于纸面且与MN成45°的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN 上的O点向磁场中射入一个速度大小为v、方向与MN成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R .该粒子从O点出发记为第一次经过直线MN ,第五次经过直线MN时恰好又通过O点.不计粒子的重力.
(1)画出粒子在磁场和电场中运动轨迹的草图;
(2)求出电场强度E的大小;
(3)求该粒子再次从O点进入磁场后,运动轨道的半径r;
(4)求该粒子从O点出发到再次回到O点所需的时间t ;
如图,半径为b、圆心为Q (b, 0) 点的圆形区域内有垂直纸面向里的匀强磁场,在第一象限内,虚线x=2b左侧与过圆形区域最高点P的切线y=b上方所围区域有竖直向下的匀强电场。其它的地方既无电场又无磁场。一带电粒子从原点O沿x轴正方向射入磁场,经磁场偏转后从P点离开磁场进入电场,经过一段时间后,最终打在放置于x=3b的光屏上。已知粒子质量为m、电荷量为q (q> 0), 磁感应强度大小为B, 电场强度大小,粒子重力忽略不计。求:
(1)粒子从原点O射入的速率v
(2)粒子从原点O射入至到达光屏所经历的时间t;
(3)若大量上述粒子以(1) 问中所求的速率,在xOy平 面内沿不同方向同时从原点O射入,射入方向分布 在图中45°范围内,不考虑粒子间的相互作用,求粒子先后到达光屏的最大时间差t0
(本题18分,第1小题3分,第2小题5分,第3小题10分)
坐标原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小都是v0,在的区域内分布有指向y轴正方向的匀强电场,场强大小为
,其中q与m分别为α粒子的电量和质量;在
的区域内分布有垂直于xoy平面向里的匀强磁场.ab为一块很大的平面感光板,放置于
处,如图所示.观察发现此时恰无粒子打到ab板上.(不考虑α粒子的重力)
(1)求α粒子刚进入磁场时的动能;
(2)求磁感应强度B的大小;
(3)将ab板平移到什么位置时所有粒子均能打到板上? 并求出此时ab板上被α粒子打中
的区域的长度.
(16分)在如图所示的xoy坐标系中,y>0的区域内存在着沿y轴正方向、场强为E的匀强电场,y<0的区域内存在着垂直纸面向里、磁感应强度为B的匀强磁场.一带电粒子从y轴上的P(0,h)点以沿x轴正方向的初速度射出,恰好能通过x轴上的D(d,0)点.己知带电粒子的质量为m,带电量为-q.h、d、q均大于0.不计重力的影响.
(1)若粒子只在电场作用下直接到达D点,求粒子初速度的大小;
(2)若粒子在第二次经过x轴时到达D点,求粒子初速度的大小
(3)若粒子在从电场进入磁场时到达D点,求粒子初速度的大小;
如图a所示,竖直直线MN左方有水平向右的匀强电场,现将一重力不计,比荷的正电荷置于电场中O点由静止释放,经过
后,电荷以v0=1.5×104m/s的速度通过MN进入其右方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻,忽略磁场变化带来的影响)。求:
(1)匀强电场的电场强度E;
(2)图b中时刻电荷与O点的竖直距离r。
(3)如图在O点下方d=39.5cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需要的时间。(结果保留2位有效数字)
如图所示装置由加速电场、偏转电场和偏转磁场组成。偏转电场处在加有电压的相距为d的两块水平平行放置的导体板之间,匀强磁场水平宽度为l,竖直宽度足够大,处在偏转电场的右边,如图甲所示。大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场。当两板没有加电压时,这些电子通过两板之间的时间为2t0,当在两板间加上如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均能通过电场,穿过磁场,最后打在竖直放置的荧光屏上(已知电子的质量为m、电荷量为e)。求:
(1)如果电子在t=0时刻进入偏转电场,求它离开偏转电场时的侧向位移大小;
(2)通过计算说明,所有通过偏转电场的电子的偏向角(电子离开偏转电场的速度方向与进入电场速度方向的夹角)都相同。
(3)要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?
试题篮
()