如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m, R是连接在导轨一端的电阻,ab是跨接在导轨上质量为m=0.1kg的导体棒。从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好。图乙是棒的v-t图象,其中OA段是直线,AC是曲线,DE是曲线图象的渐进线,小型电动机在12s末达到额定功率P=4.5W,此后保持功率不变。除R外,其余部分电阻均不计,g=10m/s2。
(1)求导体棒ab在0-12s内的加速度大小
(2)求导体棒ab与导轨间的动摩擦因数及电阻R的值
(3)若t=17s时,导体棒ab达最大速度,从0-17s内共发生位移100m,试求12s-17s内,R上产生的热量是多少?
真空中有如图l装置,水平放置的金属板A、B中间开有小孔,小孔的连线沿竖直放置的金属板C、D的中间线,一质量为m、电荷量为q的带正电粒子(初速不计、重力不计)P进入A、B间被加速后,再进入金属板C、D间的偏转电场偏转,并恰能从D板下边缘射出。已知金属板A、B间电势差为UAB=+U0,C、D板长度均为L,C、D板间距为。在金属板C、D下方有如图l所示的、有上边界的、范围足够大的匀强磁场,该磁场上边界与金属板C、D下端重合,其磁感应强度随时间变化的图象如图2,图2中的B0为已知,但其变化周期T未知,忽略偏转电场的边界效应。
(1)求金属板C、D间的电势差UCD;
(2)求粒子刚进入磁场时的速度;
(3)已知垂直纸面向里的磁场方向为正方向,该粒子在图2中t=时刻进入磁场,并在t=T0时刻的速度方向恰好水平,求该粒子从射入磁场到离开磁场的总时间t总。
如图所示,在x轴的上方有沿y轴负方向的匀强电场,电场强度为E;在x轴的下方等腰三角形CDM区域内有垂直于xOy平面向外的匀强磁场,磁感应强度为B,C、D在x轴上,它们到原点O的距离均为a,θ=30°,现将一质量为m、带电量为q的带正电粒子,从y轴上的P点由静止释放,不计重力作用和空气阻力的影响.
(1)若粒子第一次进入磁场后恰好垂直CM射出磁场,求P、O间的距离;
(2)P、O间的距离满足什么条件时,可使粒子在电场和磁场中各运动3次?
(18分) 如图,左边矩形区域内,有场强为E0的竖直向下的匀强电场和磁感应强度为B0的垂直纸面向里的匀强磁场,电荷量为q、质量不同的带正电的粒子(不计重力),沿图中左侧的水平中线射入,并水平穿过该区域,再垂直射入右边磁感应强度为B的匀强磁场区域,该区域磁场边界为AA/、BB/,方向垂直纸面向外,左右宽为a,上下足够长。
(1)求带电粒子速度的大小v;
(2)如果带电粒子都能从AA/边界垂直进入后又返回到AA/边界,则带电粒子的质量在什么范围?
(3)如果带电粒子能与BB/边界成600角射出磁场区域(该点未画出),则该带点粒子的质量是多少?
如图(a)所示,有两级光滑的绝缘平台,高一级平台距离绝缘板的中心O的高度为h,低一级平台高度是高一级平台高度的一半.绝缘板放在水平地面上,板与地面间的动摩擦因数为μ,一轻质弹簧一端连接在绝缘板的中心,另一端固定在墙面上。边界GH左边存在着正交的匀强电场和变化的磁场,电场强度为E,磁感应强度变化情况如图(b)所示,磁感应强度大小均为B.有一质量为m、带负电的小球从高一级平台左边缘以一定初速滑过平台后在t=0时刻垂直于边界GH进入复合场中,设小球刚进入复合场时磁场方向向外且为正值.小球做圆周运动至O点处恰好与绝缘板发生弹性碰撞,碰撞后小球立即垂直于边界GH返回并滑上低一级平台,绝缘板从C开始向右压缩弹簧的最大距离为S到达D,求:
⑴ 磁场变化的周期T;
⑵ 小球从高一级平台左边缘滑出的初速度v;
⑶ 绝缘板的质量M;
⑷ 绝缘板压缩弹簧具有的弹性势能EP.
如图所示的直角坐标系中,第Ⅰ、Ⅳ象限内存在着垂直纸面向里的匀强磁场,在x=-2L与y轴之间第Ⅱ、Ⅲ象限内存在大小相等,方向相反的匀强电场,场强方向如图所示。在A(-2L,L)到C(-2L,0)的连线上连续分布着电荷量为+q、质量为m的粒子。从t=0时刻起,这些带电粒子依次以相同的速度v0沿x轴正方向射出。从A点射出的粒子刚好沿如图所示的运动轨迹(轨迹与x轴的交点为OC的中点)从y轴上A′(0,-L)沿x轴正方向进入磁场。不计粒子的重力及它们间的相互作用,不考虑粒子间的碰撞。
(1)求电场强度E的大小;
(2)若匀强磁场的磁感应强度,求从A′点进入磁场的粒子返回到直线x=-2L时的位置坐标;
(3)在AC间还有哪些位置的粒子,经过电场后也能沿x轴正方向进入磁场。
如图所示,在平面直角坐标系中,直线与轴成30°角,点的坐标为(,0),在轴与直线之间的区域内,存在垂直于平面向里磁感强度为的匀强磁场.均匀分布的电子束以相同的速度从轴上的区间垂直于轴和磁场方向射入磁场.己知从轴上点射入磁场的电子在磁场中的轨迹恰好经过点,忽略电子间的相互作用,不计电子的重力.
(1)电子的比荷();
(2)有一电子,经过直线MP飞出磁场时,它的速度方向平行于y轴,求该电子在y轴上的何处进入磁场;
(3)若在直角坐标系的第一象限区域内,加上方向沿轴正方向大小为的匀强电场,在处垂直于轴放置一平面荧光屏,与轴交点为,求:从O点上方最远处进入电场的粒子打在荧光屏上的位置。
.如图所示,在空间中取直角坐标系,在第一象限内从y轴到MN之间的区域充满一个沿y轴正方向的匀强电场,MN为电场的理想边界,场强大小为E1 ,ON="d" 。在第二象限内充满一个沿x轴负方向的匀强电场,场强大小为E2。电子从y轴上的A点以初速度沿x轴负方向射入第二象限区域,它到达的最右端为图中的B点,之后返回第一象限,且从MN上的P点离开。已知A点坐标为(0,h).电子的电量为e,质量为m,电子的重力忽略不计,求:
(1)电子从A点到B点所用的时间
(2)P点的坐标;
(3)电子经过x轴时离坐标原点O的距离.
如右图所示,一个质量为m、电荷量为q的正离子,从D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在距离A点2d的G处, AG⊥AC.若不计离子重力,离子运动轨迹始终在纸面内,试求:
⑴此离子在磁场中做圆周运动的半径r;
⑵离子从D处运动到G处所需时间;
⑶离子到达G处时的动能.
如图所示,在直角坐标系xoy的第一、四象限区域内存在两个有界的匀强磁场:垂直纸面向外的匀强磁场Ⅰ、垂直纸面向里的匀强磁场Ⅱ,O、M、P、Q为磁场边界和x轴的交点,OM=MP=L.在第三象限存在沿y轴正向的匀强电场. 一质量为带电量为的带电粒子从电场中坐标为(-2L,-L)的点以速度v0沿+x方向射出,恰好经过原点O处射入区域Ⅰ又从M点射出区域Ⅰ(粒子的重力忽略不计)
(1)求第三象限匀强电场场强E的大小;
(2)求区域Ⅰ内匀强磁场磁感应强度B的大小;
(3)如带电粒子能再次回到原点O,问区域Ⅱ内磁场的宽度至少为多少?粒子两次经过原点O的时间间隔为多少?
(12分)如图所示,在xoy平面内,直线MN与x轴正方向成30o角,MN下方是垂直于纸面向外的匀强磁场,MN与y轴正方向间存在电场强度E=×105N/C的匀强电场,其方向与y轴正方向成60o角且指向左上方,一重力不计的带正电粒子,从坐标原点O沿x轴正方向进入磁场,已知粒子的比荷=107C/kg,结果均保留两位有效数字,试问:
(1)若测得该粒子经过磁场的时间t1=,求磁感应强度的大小B;
(2)若测得该粒子经过磁场的时间t1=,粒子从坐标原点开始到第一次到达y轴正半轴的时间t
(3)若粒子的速度v0=1.0×106m/s,求粒子进入电场后最终离开电场时的位置坐标
如图所示,在xoy平面直角坐标系的第一象限有射线OA,OA与x轴正方向夹角为30°,OA与y轴所夹区域内有沿y轴负方向的匀强电场E1,第二象限存在水平向右的匀强电场E2(未知),其它区域存在垂直于坐标平面向外的匀强磁场。有一质量为m、电量为q的带正电粒子,从y轴上的P点沿着x轴正方向以初速度v0射入电场,运动一段时间后经过Q点垂直于射线OA进入磁场,经磁场垂直x轴进入偏转电场E2,过y轴正半轴上的P点再次进入匀强电场E1,已知OP=h,不计粒子重力,求:
(1)粒子经过Q点时的速度大小;
(2)匀强电场电场强度E1的大小;
(3)粒子从Q点运动到P点所用的时间。
如图所示,相距为d的虚线AB、CD之间存在着水平向左的、场强为E的匀强电场,M、N是平行于电场线的一条直线上的两点,紧靠CD边界的右侧有一O点,与N点相距为l,在O点固定一电荷量为(k为静电力常量)的正点电荷,点电荷产生的电场只存在于CD边界的右侧。今在M点释放一个质量为m、电量为-e的电子(重力不计)。求:
(1)电子经过N点时的速度大小。
(2)判断电子在CD右侧做什么运动,并求出电子从M点释放后经过N点的时间。
(16分)如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
⑴求初始时刻通过电阻R的电流I的大小和方向;
⑵当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
⑶导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
如图所示的空间分为Ⅰ、Ⅱ、Ⅲ三个区域,各边界面相互平行,Ⅰ区域存在匀强电场,电场强度E=1.0×104V/m,方向垂直边界面向右.Ⅱ、Ⅲ区域存在匀强磁场,磁场的方向分别为垂直纸面向外和垂直纸面向里,磁感应强度分别为B1=2.0T、B2=4.0T.三个区域宽度分别为d1=5.0m、d2= d3=6.25m,一质量m=1.0×10-8kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子的重力忽略不计.试求:
⑴粒子离开Ⅰ区域时的速度大小v;
⑵粒子在Ⅱ区域内运动的时间t;
⑶粒子离开Ⅲ区域时速度与边界面的夹角α.
试题篮
()