如图的环状轨道处于竖直面内,它由半径分别为R和2R的两个半圆轨道、半径为R的两个四分之一圆轨道和两根长度分别为2R和4R的直轨道平滑连接而成。以水平线MN和PQ为界,空间分为三个区域,区域Ⅰ和区域Ⅲ内有磁感应强度为B的水平向里的匀强磁场,区域Ⅰ和Ⅱ内有竖直向上的匀强电场,电场场强大小为。一质量为m、电荷量为+q的带电小环穿在轨道内,它与两根直轨道间的动摩擦因数为μ(0<μ<1),而轨道的圆弧形部分均光滑。将小环在较长的直轨道CD下端的C点无初速释放(不考虑电场和磁场的边界效应,重力加速度为g),求:
(1)小环在第一次通过轨道最高点A时的速度vA的大小;
(2)小环在第一次通过轨道最高点A时受到轨道的压力FN的大小;
(3)若从C点释放小环的同时,在区域Ⅱ再另加一垂直于轨道平面向里的水平匀强电场,其场强大小为,则小环在两根直轨道上通过的总路程多大?
如图甲所示,两块长为L(L未知)的平行金属板M、N,彼此正对,板间距亦为L。现将N板接地,M上电势随时间变化规律如图乙所示。两平行金属板左边缘的中线处放置一个粒子源,能沿中线方向连续不断地放出一定速度的带正电粒子。已知带电粒子的荷质比,粒子的重力和粒子之间的作用力均可忽略不计。若某时刻粒子源放出的粒子恰能从平行金属板右边缘离开电场(设在每个粒子通过电场区域的时间内,可以把板间的电场看作是恒定的),同时进入金属板右方磁感强度为T,方向垂直纸面向里的匀强磁场中,一段时间后正粒子垂直打在屏PQ上,屏PQ与金属板右边缘的距离为d=0.5m。
求
①粒子在磁场中的速度?
②为完成以上运动带电粒子应在哪个时刻进入电场?
如图所示,位于竖直平面内的坐标系xoy,在其第三象限空间有沿水平方向的、垂直于纸面向外的匀强磁场,磁感应强度大小为B="0." 5T,还有沿x轴负方向的匀强电场,场强大小为E= 2N/C。在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO作匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10m/s2,问:
(1)油滴在第一象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;
(2)油滴在P点得到的初速度大小;
(3)油滴在第一象限运动的时间以及油滴离开第一象限处的坐标值.
(16分)如图所示,在xoy平面内,y轴左侧有沿x轴正方向的匀强电场,电场强度大小为E;在0<x<L区域内,x轴上、下方有相反方向的匀强电场,电场强度大小均为2E;在x>L的区域内有垂直于xoy平面的匀强磁场,磁感应强度大小不变、方向做周期性变化。一电荷量为q、质量为m的带正电粒子(粒子重力不计),由坐标为(-L,)的A点静止释放。
⑴求粒子第一次通过y轴时速度大小;
⑵求粒子第一次射入磁场时的位置坐标及速度;
⑶现控制磁场方向的变化周期和释放粒子的时刻,实现粒子能沿一定轨道做往复运动,求磁场的磁感应强度B大小取值范围。
如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=4h处的P2点进入磁场,转半圈后并经过y轴上的P3点.不计重力.求:
(1)电场强度的大小;
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小.
如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m, R是连接在导轨一端的电阻,ab是跨接在导轨上质量为m=0.1kg的导体棒。从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好。图乙是棒的v-t图象,其中OA段是直线,AC是曲线,DE是曲线图象的渐进线,小型电动机在12s末达到额定功率P=4.5W,此后保持功率不变。除R外,其余部分电阻均不计,g=10m/s2。
(1)求导体棒ab在0-12s内的加速度大小
(2)求导体棒ab与导轨间的动摩擦因数及电阻R的值
(3)若t=17s时,导体棒ab达最大速度,从0-17s内共发生位移100m,试求12s-17s内,R上产生的热量是多少?
真空中有如图l装置,水平放置的金属板A、B中间开有小孔,小孔的连线沿竖直放置的金属板C、D的中间线,一质量为m、电荷量为q的带正电粒子(初速不计、重力不计)P进入A、B间被加速后,再进入金属板C、D间的偏转电场偏转,并恰能从D板下边缘射出。已知金属板A、B间电势差为UAB=+U0,C、D板长度均为L,C、D板间距为。在金属板C、D下方有如图l所示的、有上边界的、范围足够大的匀强磁场,该磁场上边界与金属板C、D下端重合,其磁感应强度随时间变化的图象如图2,图2中的B0为已知,但其变化周期T未知,忽略偏转电场的边界效应。
(1)求金属板C、D间的电势差UCD;
(2)求粒子刚进入磁场时的速度;
(3)已知垂直纸面向里的磁场方向为正方向,该粒子在图2中t=时刻进入磁场,并在t=T0时刻的速度方向恰好水平,求该粒子从射入磁场到离开磁场的总时间t总。
如图所示,在x轴的上方有沿y轴负方向的匀强电场,电场强度为E;在x轴的下方等腰三角形CDM区域内有垂直于xOy平面向外的匀强磁场,磁感应强度为B,C、D在x轴上,它们到原点O的距离均为a,θ=30°,现将一质量为m、带电量为q的带正电粒子,从y轴上的P点由静止释放,不计重力作用和空气阻力的影响.
(1)若粒子第一次进入磁场后恰好垂直CM射出磁场,求P、O间的距离;
(2)P、O间的距离满足什么条件时,可使粒子在电场和磁场中各运动3次?
(18分) 如图,左边矩形区域内,有场强为E0的竖直向下的匀强电场和磁感应强度为B0的垂直纸面向里的匀强磁场,电荷量为q、质量不同的带正电的粒子(不计重力),沿图中左侧的水平中线射入,并水平穿过该区域,再垂直射入右边磁感应强度为B的匀强磁场区域,该区域磁场边界为AA/、BB/,方向垂直纸面向外,左右宽为a,上下足够长。
(1)求带电粒子速度的大小v;
(2)如果带电粒子都能从AA/边界垂直进入后又返回到AA/边界,则带电粒子的质量在什么范围?
(3)如果带电粒子能与BB/边界成600角射出磁场区域(该点未画出),则该带点粒子的质量是多少?
如图(a)所示,有两级光滑的绝缘平台,高一级平台距离绝缘板的中心O的高度为h,低一级平台高度是高一级平台高度的一半.绝缘板放在水平地面上,板与地面间的动摩擦因数为μ,一轻质弹簧一端连接在绝缘板的中心,另一端固定在墙面上。边界GH左边存在着正交的匀强电场和变化的磁场,电场强度为E,磁感应强度变化情况如图(b)所示,磁感应强度大小均为B.有一质量为m、带负电的小球从高一级平台左边缘以一定初速滑过平台后在t=0时刻垂直于边界GH进入复合场中,设小球刚进入复合场时磁场方向向外且为正值.小球做圆周运动至O点处恰好与绝缘板发生弹性碰撞,碰撞后小球立即垂直于边界GH返回并滑上低一级平台,绝缘板从C开始向右压缩弹簧的最大距离为S到达D,求:
⑴ 磁场变化的周期T;
⑵ 小球从高一级平台左边缘滑出的初速度v;
⑶ 绝缘板的质量M;
⑷ 绝缘板压缩弹簧具有的弹性势能EP.
如图所示的直角坐标系中,第Ⅰ、Ⅳ象限内存在着垂直纸面向里的匀强磁场,在x=-2L与y轴之间第Ⅱ、Ⅲ象限内存在大小相等,方向相反的匀强电场,场强方向如图所示。在A(-2L,L)到C(-2L,0)的连线上连续分布着电荷量为+q、质量为m的粒子。从t=0时刻起,这些带电粒子依次以相同的速度v0沿x轴正方向射出。从A点射出的粒子刚好沿如图所示的运动轨迹(轨迹与x轴的交点为OC的中点)从y轴上A′(0,-L)沿x轴正方向进入磁场。不计粒子的重力及它们间的相互作用,不考虑粒子间的碰撞。
(1)求电场强度E的大小;
(2)若匀强磁场的磁感应强度,求从A′点进入磁场的粒子返回到直线x=-2L时的位置坐标;
(3)在AC间还有哪些位置的粒子,经过电场后也能沿x轴正方向进入磁场。
如图所示,在平面直角坐标系中,直线与轴成30°角,点的坐标为(,0),在轴与直线之间的区域内,存在垂直于平面向里磁感强度为的匀强磁场.均匀分布的电子束以相同的速度从轴上的区间垂直于轴和磁场方向射入磁场.己知从轴上点射入磁场的电子在磁场中的轨迹恰好经过点,忽略电子间的相互作用,不计电子的重力.
(1)电子的比荷();
(2)有一电子,经过直线MP飞出磁场时,它的速度方向平行于y轴,求该电子在y轴上的何处进入磁场;
(3)若在直角坐标系的第一象限区域内,加上方向沿轴正方向大小为的匀强电场,在处垂直于轴放置一平面荧光屏,与轴交点为,求:从O点上方最远处进入电场的粒子打在荧光屏上的位置。
.如图所示,在空间中取直角坐标系,在第一象限内从y轴到MN之间的区域充满一个沿y轴正方向的匀强电场,MN为电场的理想边界,场强大小为E1 ,ON="d" 。在第二象限内充满一个沿x轴负方向的匀强电场,场强大小为E2。电子从y轴上的A点以初速度沿x轴负方向射入第二象限区域,它到达的最右端为图中的B点,之后返回第一象限,且从MN上的P点离开。已知A点坐标为(0,h).电子的电量为e,质量为m,电子的重力忽略不计,求:
(1)电子从A点到B点所用的时间
(2)P点的坐标;
(3)电子经过x轴时离坐标原点O的距离.
如右图所示,一个质量为m、电荷量为q的正离子,从D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在距离A点2d的G处, AG⊥AC.若不计离子重力,离子运动轨迹始终在纸面内,试求:
⑴此离子在磁场中做圆周运动的半径r;
⑵离子从D处运动到G处所需时间;
⑶离子到达G处时的动能.
如图所示,在直角坐标系xoy的第一、四象限区域内存在两个有界的匀强磁场:垂直纸面向外的匀强磁场Ⅰ、垂直纸面向里的匀强磁场Ⅱ,O、M、P、Q为磁场边界和x轴的交点,OM=MP=L.在第三象限存在沿y轴正向的匀强电场. 一质量为带电量为的带电粒子从电场中坐标为(-2L,-L)的点以速度v0沿+x方向射出,恰好经过原点O处射入区域Ⅰ又从M点射出区域Ⅰ(粒子的重力忽略不计)
(1)求第三象限匀强电场场强E的大小;
(2)求区域Ⅰ内匀强磁场磁感应强度B的大小;
(3)如带电粒子能再次回到原点O,问区域Ⅱ内磁场的宽度至少为多少?粒子两次经过原点O的时间间隔为多少?
试题篮
()