如图所示,串联阻值为R的闭合电路中,边长为L的正方形区域abcd存在一个方向垂直纸面向外、磁感应强度均匀增加且变化率为的匀强磁场,abcd的电阻值也为R,其他电阻不计.电阻两端又向右并联一个平行板电容器.在靠近M板处由静止释放一质量为m、电量为+q的带电粒子(不计重力),经过N板的小孔P进入一个垂直纸面向内、磁感应强度为B的圆形匀强磁场,已知该圆形匀强磁场的半径为.求:
(1)电容器获得的电压;
(2)带电粒子从小孔P射入匀强磁场时的速度;
(3)带电粒子在圆形磁场中运动的轨道半径和它离开磁场时的偏转角.
如图所示,足够长的光滑平行金属导轨MN、PQ与水平面成θ=30°角放置,一个磁感应强度B=1.00T的匀强磁场垂直穿过导轨平面,导轨上端M与P间连接阻值为R=0.30Ω的电阻,长L=0.40m、电阻r=0.10Ω的金属棒ab与MP等宽紧贴在导轨上,现使金属棒ab由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,g=10m/s2
求:(1)在0.4s时间内,通过金属棒ab截面的电荷量
(2)金属棒的质量
(3)在0.7s时间内,整个回路产生的热量
如图所示,在直角坐标xOy平面y轴左侧(含y轴)有一沿y轴负向的匀强电场,一质量为m,电量为q的带正电粒子从x轴上P处以速度沿x轴正向进入电场,从y轴上Q点离开电场时速度方向与y轴负向夹角,Q点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小,粒子能从坐标原点O沿x轴负向再进入电场.不计粒子重力,求:
(1)电场强度大小E;
(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积;
(3)粒子从P点运动到O点的总时间.
(13分)如图甲所示,场强大小为E、方向竖直向上的匀强电场内存在着一半径为R的圆形区域,O点为该圆形区域的圆心,A点是圆形区域的最低点,B点是圆形区域最右侧的点。在A点有放射源释放出初速度大小不同、方向均垂直于场强向右的正电荷,电荷的质量均为m,电量均为q,不计重力。试求:
(1)电荷在电场中运动的加速度多大?
(2)运动轨迹经过B点的电荷在A点时的速度多大?
(3)若在圆形区域的边缘有一圆弧形接收屏CBD,B点仍是圆形区域最右侧的点,C、D分别为接收屏上最边缘的两点,如图乙所示,∠COB=∠BOD=37°。求该屏上接收到的电荷的末动能大小的范围。(提示:sin37°=0.6,cos37°=0.8。)
(14分)如图所示,直角坐标系中,M点的横坐标区域内,有竖直向下的匀强电场;N点的横坐标以N为圆心、r为半径的圆内及圆边界上有垂直于纸面向里的匀强磁场.P为磁场边界上一点.NP与竖直方向的夹角.从M点沿轴正方向发射一质量为m、电荷量为q的带负电粒子,粒子速度大小为,粒子沿过P点的切线方向射出电场。后经P点进人磁场运动且经过N点,不计粒子重力,求:
(1)匀强电场的电场强度E;
(2)勾强磁场的磁感应强度B;
(3)粒子从M点到第一次经过N点所用的时间t.
如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器I的A板处由静止释放,A、B间电压为U1。微粒经加速后,从D板左边缘进入一水平放置的平行板电容器II,由C板右边缘且平行于极板方向射出,已知电容器II的板长为板间距离的2倍。电容器右侧竖直面MN与PQ之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,=45°。求:
(1)微粒从电容器I加速后的速度大小;
(2)电容器II CD间的电压;
(3)假设粒子与塑料板碰撞后,电量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,微粒在MN与PQ之间运动的时间和路程。
一荷质比为的带电粒子经一电场U=150V加速进入到一只有左边界的匀强磁场中,已知匀强磁场的磁感应强度为B="0.1T" 求:
(1)粒子离开电场时的速度
(2)粒子离开磁场左边界的位置距离进入点的长度
(3)粒子在磁场中运动的时间
如图为某同学设计的速度选择装置,两根足够长的光滑导轨/和间距为L与水平方向成角,上端接滑动变阻器R,匀强磁场垂直导轨向上,金属棒ab质量为垂直横跨在导轨上。滑动变阻器R两端连接水平放置的平行金属板,极板间距为d,板长为2d,匀强磁场B垂直纸面向内。粒子源能发射沿水平方向不同速率的带电粒子,粒子的质量为,电荷量为q,ab棒的电阻为r,滑动变阻器的最大阻值为2r,其余部分电阻不计,不计粒子重力。
(1)ab棒静止未释放时,某种粒子恰好打在上极板中点P上,该粒子带何种电荷?该粒子的速度多大?
(2)调节变阻器使R=0.5r,然后释放ab棒,求ab棒的最大速度?
(3)当ab棒释放后达到最大速度时,若变阻器在范围调节,总有粒子能匀速穿过平行金属板,求这些粒子的速度范围?
图18甲所示,平行金属板PQ、MN水平地固定在地面上方的空间,金属板长 l=20cm,两板间距d=10cm,两板间的电压UMP=100V。在距金属板M端左下方某位置有一粒子源A,从粒子源竖直向上连续发射速度相同的带电粒子,射出的带电粒子在空间通过一垂直于纸面向里的磁感应强度B=0.20T的圆形区域匀强磁场(图中未画出)后,恰好从金属板 PQ左端的下边缘水平进入两金属板间,带电粒子在电场力作用下恰好从金属板MN的右边缘飞出。已知带电粒子的比荷=2.0×106C/kg,粒子重力不计,计算结果保留两位有效数字。
求:(1)带电粒子射入电场时的速度大小;(2)圆形匀强磁场区域的最小半径;
(3)若两金属板间改加如图乙所示的电压,在哪些时刻进入两金属板间的带电粒子不碰到极板而能够飞出两板间。
如图所示,水平地面上方有一高度为H、上、下水平界面分别为PQ、MN的匀强磁场,磁感应强度为B。矩形导线框ab边长为l1,bc边长为l2,导线框的质量为m,电阻为R。磁场方向垂直于线框平面向里,磁场高度H> l2。线框从某高处由静止落下,当线框的cd边刚进入磁场时,线框的加速度方向向下、大小为;当线框的cd边刚离开磁场时,线框的加速度方向向上、大小为。在运动过程中,线框平面位于竖直平面内,上、下两边总平行于PQ。空气阻力不计,重力加速度为g。求:
(1)线框的cd边刚进入磁场时,通过线框导线中的电流;
(2)线框的ab边刚进入磁场时线框的速度大小;
(3)线框abcd从全部在磁场中开始到全部穿出磁场的过程中,通过线框导线横截面的电荷量。
如图所示,质量为M ="2.0" kg的小车A静止在光滑水平面上,A的右端停放有一个质量为m ="0.10" kg带正电荷q ="5.0" ´10-2 C的小物体B,整个空间存在着垂直纸面向里磁感应强度B =2.0T的匀强磁场。现从小车的左端,给小车A一个水平向右的瞬时冲量I ="26" N·s,使小车获得一个水平向右的初速度,此时物体B与小车A之间有摩擦力作用,设小车足够长,g 取10m/s2。求:
(1)瞬时冲量使小车获得的动能Ek;
(2)物体B的最大速度vm,并在v-t坐标系中画出物体B的速度随时间变化的示意图像;
(3)在A与B相互作用过程中系统增加的内能E热.
(18分) 如图甲所示,长为l、相距为d的两块正对的平行金属板AB和CD与一电源相连(图中未画出电源),B、D为两板的右端点,两板间电压的变化如图乙所示,在金属板B、D端的右侧有一与金属板垂直放置的荧光屏MN,荧光屏距B、D端的距离为l,质量为m,电荷量为e的电子以相同的初速度v0从极板左边中央沿平行极板的直线O1O2连续不断地射入。已知所有的电子均能够从金属板间射出,且每个电子在电场中运动的时间与电压变化的周期相等,忽略极板边缘处电场的影响,不计电子的重力以及电子之间的相互作用。求
(1)t=0和t=T/2时刻进入两板间的电子到达金属板B、D端界面时偏离O1O2的距离之比
(2)两板间电压U0的最大值
(3)电子在荧光屏上分布的最大范围
如图所示,间距为、半径为的内壁光滑的圆弧固定轨道,右端通过导线接有阻值为的电阻,圆弧轨道处于竖直向上的匀强磁场中,磁场的磁感应强度为。质量为、电阻为、长度也为的金属棒,从与圆心等高的处由静止开始下滑,到达底端时,对轨道的压力恰好等于金属棒的重力2倍,不计导轨和导线的电阻,空气阻力忽略不计,重力加速度为。求:
(1)金属棒到达底端时,电阻两端的电压多大;
(2)金属棒从处由静止开始下滑,到达底端的过程中,通过电阻的电量;
(3)用外力将金属棒以恒定的速率从轨道的低端拉回与圆心等高的处的过程中,电阻产生的热量。
如图所示,电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,轨道所在平面的正方形区域内存在一有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向上.电阻相同、质量均为m的两根相同金属杆甲和乙放置在导轨上,甲金属杆恰好处在磁场的上边界处,甲、乙相距也为l.在静止释放两金属杆的同时,对甲施加一沿导轨平面且垂直于甲金属杆的外力,使甲在沿导轨向下的运动过程中始终以加速度a=gsinθ做匀加速直线运动,金属杆乙进入磁场时立即做匀速运动.
(1)求金属杆的电阻R;
(2)若从开始释放两金属杆到金属杆乙刚离开磁场的过程中,金属杆乙中所产生的焦耳热为Q,求外力F在此过程中所做的功
试题篮
()