如图所示,水平面上有两根光滑金属导轨平行固定放置,导轨的电阻不计,间距为l =" O.5" m,左端通过导线与阻值R =3Ω的电阻连接,右端通过导线与阻值为RL=6Ω的小灯泡L连接,在CDEF矩形区域内有竖直向上,磁感应强度B = O.2T的匀强磁场。一根阻值r =O.5Ω、质量m = O.2kg的金属棒在恒力F ="2" N的作用下由静止开始从AB位置沿导轨向右运动,经过t ="1" s刚好进入磁场区域。求金属棒刚进入磁场时:
金属棒切割磁场产生的电动势;
小灯泡两端的电压和金属棒受安培力。
如图所示,质量kg的小球,带有C的正电荷,套在一根与水平方向成角的足够长绝缘杆上。小球可以沿杆滑动,与杆间的动摩擦因数,这个装置放在磁感应强度T的匀强磁场中,求小球无初速释放后沿杆下滑的最大加速度和最大速度。(g=10m/s2)
如图所示,在距地面一定高度的地方以初速度向右水平抛出一个质量为m,带负电,带电量为Q的小球,小球的落地点与抛出点之间有一段相应的水平距离(水平射程),求:
若在空间加上一竖直方向的匀强电场,使小球的水平射程增加为原来的2倍,求此电场的场强的大小和方向;
若除加上上述匀强电场外,再加上一个与方向垂直的水平匀强磁场,使小球抛出后恰好做匀速直线运动,求此匀强磁场的磁感应强度的大小和方向。
如图所示,在竖直平面内固定的圆形绝缘轨道的圆心在O点、半径为r,内壁光滑,A、B两点分别是圆弧的最低点和最高点。该区间存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动(电荷量不变),经C点时速度最大,O、C连线与竖直方向的夹角θ=60°,重力加速度为g。
求小球所受到的电场力大小;
小球在A点速度v0多大时,小球经B点时对轨道的压力最小?
如图所示,垂直于纸面向里的匀强磁场,磁感应强度随时间的变化率为DB/Dt=k(为常量).一边长为的线框,其电阻为R,线框有一半面积处于磁场区域中.则线框中感应电流的功率为____________;安培力随时间的变化率为____________.
如图所示,匀强磁场磁感应强度 B=0.2T,磁场宽度 L=0.3m, 一正方形金属框边长 ab=0.1m, 每边电阻R=0.2W,金属框在拉力F作用下以v=10m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直.求:
画出金属框穿过磁场区的过程中,金属框内感应电流i和a、b两端电压Uab随时间t的变化图线(规定以adcba为正方向);
金属框穿过磁场区域的过程中,拉力F做的功;
金属框穿过磁场区域的过程中,导线ab上所产生的热量.
右图中MN、GH为足够长光滑平行金属导轨,金属棒AB、CD垂直放在两导轨上,整个装置在同一水平面内。匀强磁场垂直于导轨所在的平面,方向如图。若给CD杆一个水平向右的速度,则
A.AB、CD最终都处于静止状态
B.AB、CD最终以相同的速度保持匀速直线运动状态
C.AB、CD最终保持匀速直线运动状态,但vCD> vAB
D.AB、CD不断做往复运动
如图所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为q,两导轨间距为L。导轨电阻忽略不计。导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。已知金属杆ab的质量为m,电阻为R2,重力加速度为g。忽略螺线管磁场对金属杆ab的影响、忽略空气阻力。
为使ab杆保持静止,求通过ab的电流的大小和方向;
当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
若螺线管内方向向左的磁场的磁感应强度的变化率DB/Dt=k(k>0)。将金属杆ab由静止释放,杆将沿斜面向下运动。求当杆的速度为v时,杆的加速度大小。
如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放。在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好。
已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为l,在t=tx时刻(tx未知)ab棒恰好进入区域Ⅱ,重力加速度为g。求:
区域I内磁场的方向;
通过cd棒中的电流大小和方向;
ab棒开始下滑的位置离区域Ⅱ上边界的距离;
ab棒开始下滑至EF的过程中,回路中产生总的热量。
(结果用B、l、θ、m、R、g表示)
两根足够长的光滑平行直导轨MN、PQ与水平面成θ角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计。现让ab杆由静止开始沿导轨下滑。
求ab杆下滑的最大速度vm;
ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x及通过电阻R的电量q。
如图所示,一倾斜的金属框架上设有一根金属棒,由于摩擦力的作用,在没有磁场时金属棒可在框架上处于静止状态,从t0时刻开始,给框架区域加一个垂直框架平面斜向上的逐渐增强的匀强磁场,则从t0开始的一小段时间内,金属棒所受的摩擦力可能
A.不断增大; | B.不断减小; |
C.先减小后增大; | D.先增大后减小 |
如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L = 1 m,导轨平面与水平面成θ=30°角,上端连接R=1.5Ω的电阻。质量为m="0.2" kg、阻值r=0.5Ω的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =" 4" m,整个装置处于匀强磁场中。磁感应强度B的大小与时间t成正比,磁场的方向垂直导轨平面向上。金属棒ab在沿平行斜面方向的外力F作用下保持静止,当t = 2 s时外力F恰好为零(g =10 m/s2)。求t = 2 s时刻棒的热功率。
边长为h的正方形金属导线框,从图所示的初始位置由静止开始下落,通过一匀强磁场区域,磁场方向垂直于线框平面,磁场区宽度等于H,H>h。从线框开始下落到完全穿过磁场区的整个过程中
A.线框中总是有感应电流存在 |
B.线框受到的磁场力的合力的方向有时向上,有时向下 |
C.线框运动的方向始终是向下的 |
D.线框速度的大小不一定总是在增加 |
两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=50g,电阻均为R=1.0Ω,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度随时间变化的图像如图乙所示(在0~1.0s和2.0~3.0s内,cd做匀变速直线运动)。
求在0~1.0s时间内,回路中感应电流的大小;
求在0~3.0s时间内,ab杆在水平导轨上运动的最大速度;
已知1.0~2.0s内,ab杆做匀加速直线运动,在图丙中画出在0~3.0s内,拉力F随时间变化的图像。(不需要写出计算过程,只需画出图线)
如图所示,粗糙的平行金属导轨倾斜放置,导轨间距l=1m,导轨电阻不计,顶端QQ′之间连接一个阻值为R=1.5Ω的电阻和开关S,底端PP′处有一小段水平轨道相连,匀强磁场B垂直于导轨平面。断开开关S,将一根电阻不计质量为m=4kg的金属棒从AA′处由静止开始滑下,落在水平面上的FF′处;闭合开关S,将金属棒仍从AA′处由静止开始滑下,落在水平面上的EE′处;开关S仍闭合,金属棒从另一位置CC′处由静止开始滑下,仍落在水平面上的EE′处。(忽略金属棒经过PP′处的能量损失,金属棒始终与导轨垂直接触良好)测得相关数据为s=2m,h=5m,x1=2m,x2=1.5m,下列说法正确的是( )
A.S断开时,金属棒沿斜面下滑的加速度为1m/s2 |
B.CC′一定在AA′的上方 |
C.B=2T |
D.从AA'处释放时,电阻R上产生的热量为3.5J |
试题篮
()