如图所示,一个质量m=2.0×10-11kg、电荷量q=1.0×10-5C的带电粒子(重力忽略不计),从静止开始经U1=100V电场加速后,沿两平行金属板间中线水平进入电压U2=100V的偏转电场,带电粒子从偏转电场射出后,进入垂直纸面向里的匀强磁场,磁场的左右边界均与偏转电场的金属板垂直。已知偏转电场金属板长L=20cm、两板间距,匀强磁场的宽度D=10cm。求:
(1)带电粒子进入偏转电场时的速度v0;
(2)带电粒子射出偏转电场时速度v的大小和方向;
(3)为了使带电粒子不从磁场右边界射出,匀强磁场磁感应强度的最小值B。
如图所示,两根足够长、相距为L的金属直角导轨,它们各有一边在同一水平面内,另一边垂直于水平面。一绝缘细线跨过导轨直角顶点处定滑轮连接两金属细杆ab、cd,杆通过两端金属小圆环垂直套在导轨上,细杆质量均为m、电阻均为R,整个装置处于磁感强度大小为B,方向竖直向上的匀强磁场中。保持细线拉直后同时无初速释放两细杆,cd杆下降高度h时达到最大速度。 ab杆一直在水平导轨上运动,接触处摩擦及导轨电阻均不计,取重力加速度为g。求:
(1)刚释放时,ab杆的加速度大小;
(2)下滑过程中,cd杆的最大速率;
(3)从开始释放到刚好达到最大速度的过程中整个回路所产生的热量。
许多仪器中可利用磁场控制带电粒子的运动轨迹。如图所示的真空环境中,有一半径r=0.05m的圆形区域内存在磁感应强度B=0.2T的匀强磁场,其右侧相距d=0.06m处有一足够大的竖直屏。从S处不断有比荷=108C/kg的带正电粒子以速度v=2×106m/s沿SQ方向射出,经过磁场区域后打在屏上。不计粒子重力,求:
(1)粒子在磁场中做圆周运动的轨迹半径;
(2)绕通过P点垂直纸面的轴,将该圆形磁场区域逆时针缓慢转动90°的过程中,粒子在屏上能打到的范围。
如图所示,在x<0的区域内存在沿y轴负方向的匀强电场,在第一象限倾斜直线OM的下方和第四象限内存在垂直纸面向里的匀强磁场。一带电粒子自电场中的P点沿x轴正方向射出,恰好经过坐标原点O进入匀强磁场,经磁场偏转后垂直于y轴从N点回到电场区域,并恰能返回P点。已知P点坐标为,带电粒子质量为m,电荷量为q,初速度为v0,不计粒子重力。求:
(1)匀强电场的电场强度大小;
(2)N点的坐标;
(3)匀强磁场的磁感应强度大小。
如图所示,在方向竖直向下的匀强磁场中,有两根竖直放置的平行金属导轨CD、EF.导轨上放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ.先从t=0时刻起,给金属棒通以图示方向的电流,且电流强度与时间成正比,即:I=kt,其中k为衡量.若金属棒与导轨始终垂直,则关于金属棒的运动情况正确的是( )
A.金属棒先做加速运动,最后匀速运动
B.金属棒先做加速运动,再做减速运动,最后匀速运动
C.金属棒先做加速运动,再做减速运动,最后静止
D.以上说法均不正确
如图所示,一价氢离子(H)和二价氦离子(He)的混合体,经同一加速电场后,垂直射入同一偏转电场中,偏转后打在同一荧光屏上,则它们( )
A.同时到达屏上同一点 | B.先后到达屏上同一点 |
C.同时到达屏上不同点 | D.先后到达屏上不同点 |
如图的环状轨道处于竖直面内,它由半径分别为R和2R的两个半圆轨道、半径为R的两个四分之一圆轨道和两根长度分别为2R和4R的直轨道平滑连接而成。以水平线MN和PQ为界,空间分为三个区域,区域Ⅰ和区域Ⅲ内有磁感应强度为B的水平向里的匀强磁场,区域Ⅰ和Ⅱ内有竖直向上的匀强电场,电场场强大小为。一质量为m、电荷量为+q的带电小环穿在轨道内,它与两根直轨道间的动摩擦因数为μ(0<μ<1),而轨道的圆弧形部分均光滑。将小环在较长的直轨道CD下端的C点无初速释放(不考虑电场和磁场的边界效应,重力加速度为g),求:
(1)小环在第一次通过轨道最高点A时的速度vA的大小;
(2)小环在第一次通过轨道最高点A时受到轨道的压力FN的大小;
(3)若从C点释放小环的同时,在区域Ⅱ再另加一垂直于轨道平面向里的水平匀强电场,其场强大小为,则小环在两根直轨道上通过的总路程多大?
如图所示是说明示波器工作原理的示意图,已知两平行板间的距离为d、板长为.初速度为零的电子经电压为U1的电场加速后从两平行板间的中央处垂直进入偏转电场,设电子质量为m、电荷量为e .求:
(1)经电场加速后电子速度v的大小;
(2)要使电子离开偏转电场时的偏转量最大,两平行板间的电压U2应是多大?
边长为a的闭合金属正三角形框架,完全处于垂直于框架平面的匀强磁场中,现把框架匀速拉出磁场,如图所示,则下列图象规律与这一过程相符合的是( )
如图所示,有界匀强磁场的磁感应强度B=2×10-3 T;磁场右边是宽度L=0.2 m、场强E=40 V/m、方向向左的匀强电场.一带电粒子电荷量q=-3.2×10-19 C,质量m=6.4×10-27 kg,以v=4×104 m/s的速度沿OO′垂直射入磁场,在磁场中偏转后进入右侧的电场,最后从电场右边界射出.(不计重力)求:
(1)大致画出带电粒子的运动轨迹;
(2)带电粒子在磁场中运动的轨道半径;
(3)带电粒子飞出电场时的动能Ek.
如图所示,电阻可忽略的光滑平行金属导轨MN、M′N′固定在竖直方向,导轨间距d=0.8 m,下端NN′间接一阻值R=1.5 Ω的电阻,磁感应强度B=1.0 T的匀强磁场垂直于导轨平面.距下端h=1.5 m高处有一金属棒ab与轨道垂直且接触良好,其质量m=0.2 kg,电阻r=0.5 Ω,由静止释放到下落至底端NN′的过程中,电阻R上产生的焦耳热QR=1.05 J.g=10 m/s2.求:
(1)金属棒在此过程中克服安培力所做的功WA;
(2)金属棒下滑速度为2 m/s时的加速度a;
(3)金属棒下滑的最大速度vm.
如图所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上场强大小为的匀强电场(上、下及左侧无界)。一个质量为、电量为的可视为质点的带正电小球,在时刻以大小为的水平初速度向右通过电场中的一点P,当时刻在电场所在空间中加上一如图所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为,D到竖直面MN的距离DQ为.设磁感应强度垂直纸面向里为正.
(1)试说明小球在0—时间内的运动情况,并在图中画出运动的轨迹;
(2)试推出满足条件时的表达式(用题中所给物理量、、、、来表示);
(3)若小球能始终在电场所在空间做周期性运动.则当小球运动的周期最大时,求出磁感应强度及运动的最大周期的表达式(用题中所给物理量、、、来表示)。
如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律( )
如下图所示,一个带负电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强磁场B中.现给滑环一个水平向右的瞬时速度,使其由静止开始运动,则滑环在杆上的运动情况可能是( )
A.始终做匀速运动 |
B.开始做减速运动,最后静止于杆上 |
C.先做加速运动,最后做匀速运动 |
D.先做减速运动,最后做匀速运动 |
试题篮
()