如图,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U1 =100V电压加速后,水平进入两平行金属板间的偏转电场中。金属板长L=20cm,两板间距d=10cm。求:
⑴微粒进入偏转电场时的速度v是多大?
⑵若微粒射出电场过程的偏转角为θ=30°,并接着进入一个方向垂直与纸面向里的匀强磁场区,则两金属板间的电压U2是多大?
⑶若该匀强磁场的宽度为D=10cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图所示,MPQO为有界的竖直向下的匀强电场(边界上有电场),电场强度为E=mg/q,ACB为光滑固定的半圆形轨道,轨道半径为R,A、B为圆水平直径的两个端点,AC为圆弧。一个质量为m,电荷量为-q的带电小球,从A点正上方高为H=R处由静止释放,并从A点沿切线进入半圆轨道,不计空气阻力及一切能量损失,关于带电小球的受力及运动情况,下列说法正确的是( )
A.小球到达C点时对轨道压力为3 mg
B.小球在AC部分运动时,加速度不变
C.适当增大E,小球到达C点的速度可能为零
D.若E=2mg/q,要使小球沿轨道运动到C,则应将H至少调整为3R/2
如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。静止的带电粒子带电量为+q,质量为m(不计重力),从点P经电场加速后,从小孔 Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为a=45°,孔Q到板的下端C的距离为L。当M、N两板间电压取最大值时,粒子恰垂直打在CD板上。求
(1)两板间电压的最大值Um;
(2)CD板上可能被粒子打中的区域的长度
(3)粒子在磁场中运动的最长时间tm。
如图所示,足够长的光滑平行金属导轨MN、PQ与水平面成θ=30°角放置,一个磁感应强度B=1.00T的匀强磁场垂直穿过导轨平面,导轨上端M与P间连接阻值为R=0.30Ω的电阻,长L=0.40m、电阻r=0.10Ω的金属棒ab与MP等宽紧贴在导轨上,现使金属棒ab由静止开始下滑,其下滑距离与时间的关系如下表所示,导轨电阻不计,g=10m/s2
求:(1)在0.4s时间内,通过金属棒ab截面的电荷量
(2)金属棒的质量
(3)在0.7s时间内,整个回路产生的热量
光滑绝缘水平面上有一个带点质点正在以速度向右运动。如果加一个竖直向下的匀强磁场,经过一段时间后,该质点的速度第一次变为与初始时刻的速度大小相等、方向相反;如果不加匀强磁场而改为加一个沿水平方向的匀强电场,经过相同的一段时间后,该质点的速度也第一次变为与初始时刻的速度大小相等、方向相反,则所加的匀强磁场的磁感应强度和所加的匀强电场的电场强度的比值为
A. | B. |
C. | D. |
如图所示,带负电的物块A放在足够长的不带电的绝缘小车B上,两者均保持静止,置于垂直于纸面向里的匀强磁场中,在t=0时刻用水平恒力F向左推小车B.已知地面光滑,A、B接触面粗糙,A所带电荷量保持不变,下列四图中关于A、B的v-t图象及A、B之间摩擦力Ff—t图像大致正确的是
如图所示,在直角坐标xOy平面y轴左侧(含y轴)有一沿y轴负向的匀强电场,一质量为m,电量为q的带正电粒子从x轴上P处以速度沿x轴正向进入电场,从y轴上Q点离开电场时速度方向与y轴负向夹角,Q点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小,粒子能从坐标原点O沿x轴负向再进入电场.不计粒子重力,求:
(1)电场强度大小E;
(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积;
(3)粒子从P点运动到O点的总时间.
如图所示,空间有相互垂直的匀强电场和匀强磁场交界于虚线,电场强度为,虚线下方匀强磁场范围足够大,磁感应强度为,现有质量为、电量为的带正电粒子从距电磁场边界处无初速释放(带电粒子重力可忽略不计).求:
(1)带电粒子刚离开电场时速度大小;
(2)带电粒子在匀强磁场中运动的轨迹半径;
(3)带电粒子第一次在匀强磁场中运动的时间.
(18分)如图,区域I内有与水平方向成45°角的匀强电场E1,区域宽度为d 1,区域II内有正交的有界匀强磁场B和匀强电场E 2,区域宽度为d 2,磁场方向垂直纸面向里,电场方向竖直向下。一质量为m、带电量为q的微粒在区域I左边界的P点,由静止释放后水平向右做直线运动,进入区域II后做匀速圆周运动,从区域II右边界上的Q点穿出,其速度方向改变了60°,重力加速度为g ,求:
(1)区域I和区域II内匀强电场的电场强度E 1、E 2的大小?
(2)区域II内匀强磁场的磁感应强度B的大小。
(3)微粒从P运动到Q的时间有多长?
如图所示,空间存在着电场强度E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L=0.5 m的绝缘细线一端固定于O点,另一端拴着质量m=0.5 kg电荷量q=4×10-2 C的小球。现将细线拉至水平位置,将小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂。取g=10 m/s2。求:
(1)小球的电性;
(2)细线能承受的最大拉力值。
两平行金属板的间距恰好等于极板的长度。现有重力不计的正离子束以相同的初速度v0平行于两板从两板的正中间向右射入。第一次在两板间加恒定的电压,建立起场强为E的匀强电场,则正离子束刚好从上极板的右边缘射出;第二次撤去电场,在两板间建立起磁感应强度为B,方向垂直于纸面的匀强磁场,则正离子束刚好从下极板右边缘射出。由此可知E与B大小的比值是 ( )
A.1.25v0 | B.0.5v0 | C.0.25v0 | D.v0 |
如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xOy平面向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=b处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2b处的P2点进入磁场,并经过y轴上y=-2b处的P3点,不计粒子重力.求:
(1)电场强度的大小;
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小.
如图所示,带负电的物块A放在足够长的不带电的绝缘小车B上,两者均保持静止,置于垂直于纸面向里的匀强磁场中,在t=0时刻用水平恒力F向左推小车B.已知地面光滑,A、B接触面粗糙,A所带电荷量保持不变,下列四图中关于A、B的v t图象及A、B之间摩擦力Ff—t图像大致正确的是
(13分)如图甲所示,场强大小为E、方向竖直向上的匀强电场内存在着一半径为R的圆形区域,O点为该圆形区域的圆心,A点是圆形区域的最低点,B点是圆形区域最右侧的点。在A点有放射源释放出初速度大小不同、方向均垂直于场强向右的正电荷,电荷的质量均为m,电量均为q,不计重力。试求:
(1)电荷在电场中运动的加速度多大?
(2)运动轨迹经过B点的电荷在A点时的速度多大?
(3)若在圆形区域的边缘有一圆弧形接收屏CBD,B点仍是圆形区域最右侧的点,C、D分别为接收屏上最边缘的两点,如图乙所示,∠COB=∠BOD=37°。求该屏上接收到的电荷的末动能大小的范围。(提示:sin37°=0.6,cos37°=0.8。)
如图a所示,竖直直线MN左方有水平向右的匀强电场,现将一重力不计,比荷的正电荷置于电场中O点由静止释放,经过后,电荷以v0=1.5×104m/s的速度通过MN进入其右方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻,忽略磁场变化带来的影响)。求:
(1)匀强电场的电场强度E;
(2)图b中时刻电荷与O点的竖直距离r。
(3)如图在O点下方d=39.5cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需要的时间。(结果保留2位有效数字)
试题篮
()