如图所示,在x轴的上方有沿y轴负方向的匀强电场,电场强度为E;在x轴的下方等腰三角形CDM区域内有垂直于xOy平面向外的匀强磁场,磁感应强度为B,C、D在x轴上,它们到原点O的距离均为a,θ=30°,现将一质量为m、带电量为q的带正电粒子,从y轴上的P点由静止释放,不计重力作用和空气阻力的影响.
(1)若粒子第一次进入磁场后恰好垂直CM射出磁场,求P、O间的距离;
(2)P、O间的距离满足什么条件时,可使粒子在电场和磁场中各运动3次?
.如图所示,在空间中取直角坐标系,在第一象限内从y轴到MN之间的区域充满一个沿y轴正方向的匀强电场,MN为电场的理想边界,场强大小为E1 ,ON="d" 。在第二象限内充满一个沿x轴负方向的匀强电场,场强大小为E2。电子从y轴上的A点以初速度沿x轴负方向射入第二象限区域,它到达的最右端为图中的B点,之后返回第一象限,且从MN上的P点离开。已知A点坐标为(0,h).电子的电量为e,质量为m,电子的重力忽略不计,求:
(1)电子从A点到B点所用的时间
(2)P点的坐标;
(3)电子经过x轴时离坐标原点O的距离.
如图所示,电阻可忽略的光滑平行金属导轨MN、M′N′固定在竖直方向,导轨间距d=0.8 m,下端NN′间接一阻值R=1.5 Ω的电阻,磁感应强度B=1.0 T的匀强磁场垂直于导轨平面.距下端h=1.5 m高处有一金属棒ab与轨道垂直且接触良好,其质量m=0.2 kg,电阻r=0.5 Ω,由静止释放到下落至底端NN′的过程中,电阻R上产生的焦耳热QR=1.05 J.g=10 m/s2.求:
(1)金属棒在此过程中克服安培力所做的功WA;
(2)金属棒下滑速度为2 m/s时的加速度a;
(3)金属棒下滑的最大速度vm.
如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律( )
如右图所示,一个质量为m、电荷量为q的正离子,从D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在距离A点2d的G处, AG⊥AC.若不计离子重力,离子运动轨迹始终在纸面内,试求:
⑴此离子在磁场中做圆周运动的半径r;
⑵离子从D处运动到G处所需时间;
⑶离子到达G处时的动能.
如图所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上场强大小为的匀强电场(上、下及左侧无界)。一个质量为、电量为的可视为质点的带正电小球,在时刻以大小为的水平初速度向右通过电场中的一点P,当时刻在电场所在空间中加上一如图所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为,D到竖直面MN的距离DQ为.设磁感应强度垂直纸面向里为正.
(1)试说明小球在0—时间内的运动情况,并在图中画出运动的轨迹;
(2)试推出满足条件时的表达式(用题中所给物理量、、、、来表示);
(3)若小球能始终在电场所在空间做周期性运动.则当小球运动的周期最大时,求出磁感应强度及运动的最大周期的表达式(用题中所给物理量、、、来表示)。
如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xOy平面向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=b处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2b处的P2点进入磁场,并经过y轴上y=-2b处的P3点,不计粒子重力.求:
(1)电场强度的大小;
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小.
许多仪器中可利用磁场控制带电粒子的运动轨迹。如图所示的真空环境中,有一半径r=0.05m的圆形区域内存在磁感应强度B=0.2T的匀强磁场,其右侧相距d=0.06m处有一足够大的竖直屏。从S处不断有比荷=108C/kg的带正电粒子以速度v=2×106m/s沿SQ方向射出,经过磁场区域后打在屏上。不计粒子重力,求:
(1)粒子在磁场中做圆周运动的轨迹半径;
(2)绕通过P点垂直纸面的轴,将该圆形磁场区域逆时针缓慢转动90°的过程中,粒子在屏上能打到的范围。
如图的环状轨道处于竖直面内,它由半径分别为R和2R的两个半圆轨道、半径为R的两个四分之一圆轨道和两根长度分别为2R和4R的直轨道平滑连接而成。以水平线MN和PQ为界,空间分为三个区域,区域Ⅰ和区域Ⅲ内有磁感应强度为B的水平向里的匀强磁场,区域Ⅰ和Ⅱ内有竖直向上的匀强电场,电场场强大小为。一质量为m、电荷量为+q的带电小环穿在轨道内,它与两根直轨道间的动摩擦因数为μ(0<μ<1),而轨道的圆弧形部分均光滑。将小环在较长的直轨道CD下端的C点无初速释放(不考虑电场和磁场的边界效应,重力加速度为g),求:
(1)小环在第一次通过轨道最高点A时的速度vA的大小;
(2)小环在第一次通过轨道最高点A时受到轨道的压力FN的大小;
(3)若从C点释放小环的同时,在区域Ⅱ再另加一垂直于轨道平面向里的水平匀强电场,其场强大小为,则小环在两根直轨道上通过的总路程多大?
如下图所示,一个带负电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强磁场B中.现给滑环一个水平向右的瞬时速度,使其由静止开始运动,则滑环在杆上的运动情况可能是( )
A.始终做匀速运动 |
B.开始做减速运动,最后静止于杆上 |
C.先做加速运动,最后做匀速运动 |
D.先做减速运动,最后做匀速运动 |
如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L.一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行.t=0时刻导线框的上边恰好与磁场的下边界重合(图中位置I),导线框的速度为v0.经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零.此后,导线框下落,经过一段时间回到初始位置I(不计空气阻力),则
A.上升过程中,导线框的加速度逐渐减小 |
B.上升过程克服重力做功的平均功率小于下降过程重力的平均功率 |
C.上升过程中线框产生的热量比下降过程中线框产生的热量的多 |
D.上升过程中合力做的功与下降过程中合力做的功相等 |
(12分)如图所示,在xoy平面内,直线MN与x轴正方向成30o角,MN下方是垂直于纸面向外的匀强磁场,MN与y轴正方向间存在电场强度E=×105N/C的匀强电场,其方向与y轴正方向成60o角且指向左上方,一重力不计的带正电粒子,从坐标原点O沿x轴正方向进入磁场,已知粒子的比荷=107C/kg,结果均保留两位有效数字,试问:
(1)若测得该粒子经过磁场的时间t1=,求磁感应强度的大小B;
(2)若测得该粒子经过磁场的时间t1=,粒子从坐标原点开始到第一次到达y轴正半轴的时间t
(3)若粒子的速度v0=1.0×106m/s,求粒子进入电场后最终离开电场时的位置坐标
(16分)如图所示,在xoy平面内,y轴左侧有沿x轴正方向的匀强电场,电场强度大小为E;在0<x<L区域内,x轴上、下方有相反方向的匀强电场,电场强度大小均为2E;在x>L的区域内有垂直于xoy平面的匀强磁场,磁感应强度大小不变、方向做周期性变化。一电荷量为q、质量为m的带正电粒子(粒子重力不计),由坐标为(-L,)的A点静止释放。
⑴求粒子第一次通过y轴时速度大小;
⑵求粒子第一次射入磁场时的位置坐标及速度;
⑶现控制磁场方向的变化周期和释放粒子的时刻,实现粒子能沿一定轨道做往复运动,求磁场的磁感应强度B大小取值范围。
如图所示,平行板电容器上板M带正电,两板间电压恒为U,极板长为(1+)d,板间距离为2d,在两板间有一圆形匀强磁场区域,磁场边界与两板及右侧边缘线相切,P点是磁场边界与下板N的切点,磁场方向垂直于纸面向里,现有一带电微粒从板的左侧进入磁场,若微粒从两板的正中间以大小为v0水平速度进入板间电场,恰做匀速直线运动,经圆形磁场偏转后打在P点。
(1)判断微粒的带电性质并求其电荷量与质量的比值;
(2)求匀强磁场的磁感应强度B的大小;
(3)若带电微粒从M板左侧边缘沿正对磁场圆心的方向射入板间电场,要使微粒不与两板相碰并从极板左侧射出,求微粒入射速度的大小范围。
如右图所示,PQ是两块平行金属板,上极板接电源正极,两极板之间的电压为U=1.2×104V,一带负电的粒子通过P极板的小孔以速度v0=2.0×104m/s垂直金属板飞入,通过Q极板上的小孔后,垂直AC边经中点O进入边界为等腰直角三角形的匀强磁场中,磁感应强度为B=1.0T,边界AC的长度为L=1.6m,粒子比荷=5×104C/kg,不计粒子的重力。求:
(1)粒子进入磁场时的速度大小;
(2)粒子经过磁场边界上的位置到B点的距离以及在磁场中的运动时间。
试题篮
()