某水上游乐场举办了一场趣味水上比赛.如图所示,质量m=60kg的参赛者(可视为质点),在河岸上A点紧握一根长L=5.0m的不可伸长的轻绳,轻绳另一端系在距离水面高H=10.0m的O点,此时轻绳与竖直方向的夹角为θ=37°,C点是位于O点正下方水面上的一点,距离C点x=5.0m处的D点固定着一只救生圈,O、A、C、D各点均在同一竖直面内,若参赛者抓紧绳端点,从台阶上A点沿垂直于轻绳斜向下以一定的初速度跃出,当摆到O点正下方的B点时松开手,此后恰能落在救生圈内.(sin37°=0.6,cos37°=0.8, g=10m/s2)
(1)求参赛者经过B点时速度的大小v;
(2)求参赛者从台阶上A点跃出时的动能EK;
(3)若手与绳之间的动摩擦因数为0.6,参赛者要顺利完成比赛,则每只手对绳的最大握力不得小于多少?(设最大静摩擦等于滑动摩擦力)
如图所示,半径为R的光滑圆形轨道固定在竖直面内.小球A、B质量分别为m、βm(β为待定系数).A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为R,碰撞中无机械能损失.重力加速,碰撞中无机械能损失.重力加速度为g.试求:
(1)待定系数β;
(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;
(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度.
如图所示,固定在水平地面上的工件,由AB和BD两部分组成,其中AB部分为光滑的圆弧,AOB=37o,圆弧的半径R=0.5m,圆心O点在B点正上方;BD部分水平,长度为0.2m,C为BD的中点。现有一质量m=lkg,可视为质点的物块从A端由静止释放,恰好能运动到D点。(g=10m/s2,sin37o=0.6,cos37o=0.8)求:
(1)为使物块恰好运动到C点静止,可以在物块运动到B点后,对它施加一竖直向下的恒力F,F应为多大?
(2)为使物块运动到C点时速度为零,也可先将BD部分以B为轴向上转动一锐角,
应为多大?(假设B处有一小段的弧线平滑连接,物块经过B点时没有能量损失)
(3)接上一问,求物块在BD板上运动的总路程。
城市中为了解决交通问题,修建了许多立交桥,如图所示,桥面为圆弧形的立交桥AB,横跨在水平路面上,长为L=200m,桥高h=20m。可以认为桥的两端A、B与水平路面的连接处是平滑的。一辆小汽车的质量m=1040kg,以25m/s的速度冲上圆弧形的立交桥,假设小汽车冲上立交桥后就立即关闭发动机,不计车受到的摩擦阻力。试计算:(g取10m/s2)
(1)小汽车冲上桥顶时的速度是多大?
(2)小汽车在桥顶处对桥面的压力的大小。
如图所示,质量为m带电量为+q的小球静止于光滑绝缘水平面上,在恒力F作用下,由静止开始从A点出发到B点,然后撤去F,小球冲上放置在竖直平面内半径为R的光滑绝缘圆形轨道,圆形轨道的最低点B与水平面相切,小球恰能沿圆形轨道运动到轨道末端D,并从D点抛出落回到原出发点A处。整个装置处于电场强度为E=
的水平向左的匀强电场中,小球落地后不反弹,运动过程中没有空气阻力。求:AB之间的距离和力F的大小。
如下图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速经两个四分之一圆弧衔接而成的轨道,从最高点P飞出进入炒锅内,利用来回运动使其均匀受热。我们用质量为m的小滑块代替栗子,借这套装置来研究一些物理问题。设大小两个四分之一圆弧半径为2R和R,小平台和圆弧均光滑。将过锅底的纵截面看作是两个斜面AB、CD和一段光滑圆弧BC组成,滑块与斜面间的动摩擦因数为0.25,且不随温度变化。两斜面倾角均为,AB=CD=2R,A、D等高,D端固定一小挡板,碰撞不损失机械能。滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g。
(1)如果滑块恰好能经P点飞出,为了使滑块恰好沿AB斜面进入锅内,应调节锅底支架高度使斜面的A、D点离地高为多少?
(2)接(1)问,试通过计算用文字描述滑块的运动过程。
(3)对滑块的不同初速度,求其通过最高点P和小圆弧最低点Q时受压力之差的最小值。
如图所示,倾角为、宽度为
、长为
的光滑倾斜导轨,导轨C1D1、C2D2顶端接有定值电阻
,倾斜导轨置于垂直导轨平面斜向上的匀强磁场中,磁感应强度为B=5T,C1A1、C2A2是长为S=4.5m的粗糙水平轨道,A1B1、A2B2是半径为R=0.5m处于竖直平面内的
光滑圆环(其中B1、B 2为弹性挡板),整个轨道对称。在导轨顶端垂直于导轨放一根质量为m=2kg、电阻不计的金属棒MN,当开关S闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S,(不考虑金属棒MN经过接点C1、C2处和棒与B1、B2处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN之间的动摩擦因数为µ=0.1,g=10m/s2)。求:
(1)开关闭合时金属棒滑到倾斜轨道底端时的速度;
(2)金属棒MN在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;
(3)当金属棒第三次经过A1A2时对轨道的压力。
(创编)如图所示,质量为m、电量为-q的小球,可在半径为R的固定半圆形光滑的绝缘轨道两端点M,N之间来回滚动,磁场磁感强度B垂直于轨道平面,小球在M、N处速度为零。若小球在最低点的最小压力为零,那么磁感强度B为多大?小球对轨道最低点的最大压力为多大?
(已知重力加速度为g)
如图水平固定放置的平行金属板M、N,两板间距为d。在两板的中心(即到上、下板距离相等,到板左、右端距离相等)有一悬点O系有一长r=d/4的绝缘细线,线的另一端系有一质量为m、带正电荷的小球,电荷量为q。两板间有一竖直向下的匀强电场,匀强电场大小E=3mg/q。小球在最低点A处于静止。求:
(1)小球静止时细线拉力T大小;
(2)若电场大小保持不变,方向变为竖直向上,要使得小球在竖直平面内绕O点恰好能做完整的圆周运动,在A位置至少给小球多大的初速度v0。
(3)小球恰能绕悬点O在竖直平面内做完整的圆周运动.当小球运动到竖直直径AB的B端时,细线突然断开,小球恰好从平行金属板M的左边缘飞出,求平行金属板的长度L?
如下图所示,两平行金属板A、B长为L=8 cm,两板间距离d=8 cm,A板比B板电势高300 V,一带正电的粒子电荷量为q=1.0×10-10 C,质量为m=1.0×10-20 kg,沿电场中心线RO垂直电场线飞入电场,初速度v0=2.0×106 m/s,粒子飞出电场后经过界面MN、PS间的无电场区域,然后进入固定在O点的点电荷Q形成的电场区域(设界面PS右侧点电荷的电场分布不受界面的影响).已知两界面MN、PS相距为12 cm,D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9 cm,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc上.(静电力常量k=9.0×109 N·m2/C2,粒子的重力不计)求:
(1)粒子穿过界面MN时偏离中心线RO的距离多远?到达PS界面时离D点多远?
(2) 垂直打在放置于中心线上的荧光屏的位置离D点多远?.
(3)确定点电荷Q的电性并求其电荷量的大小.
如图所示,在竖直向下的匀强电场中有一带电量为q=-2×10-5C的小球,自倾角为θ=37°的绝缘斜面顶端A点由静止开始滑下,接着通过半径为R=0.5m的绝缘半圆轨道最高点C,已知小球质量为m=0.5kg,匀强电场的场强E=2×105N/C,小球运动过程中摩擦阻力及空气阻力不计,求:
(1)H至少应为多少?
(2)通过调整释放高度使小球到达C点的速度为2m/s,则小球落回到斜面时的动能是多少?
小车上有一个固定支架,支架上用长为的绝缘细线悬挂质量为m、电量为q的小球,处于水平方向的匀强电场中。小车在距离矮墙x处,向着矮墙从静止开始做加速度a匀加速运动,此时,细线刚好竖直,如图所示。当小车碰到矮墙时,立即停止运动,且电场立刻消失。已知细线最大承受拉力为7mg。
(1)求匀强电场的电场强度;
(2)若小球能通过最高点,写出最高点时细线的拉力与x的关系式;
(3)若要使细线不断裂也不松弛,确定x的取值范围。
如图所示一宇航员站在一星球表面,用一根细绳一端固定在O点,另一端固定质量为m的小球,在最低点给小球某一速度让小球在竖直平面内做完整圆周运动,小球运动到最低点和最高点绳的拉力差为F,已知该星球的半径为R,万有引力常量为G。求该星球的质量M。
(18分)如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、
组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知
,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后从G点水平飞出,落到水平地面上,落点Q点到B点的距离为x=4R。不计空气阻力,重力加速度为g,求:
(1)小球从G点水平飞出时的速度多大?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
试题篮
()