如右图所示,光滑的水平面AB与半径为R="0.32" m的光滑竖直半圆轨道BCD在B点相切,D为轨道最高点.用轻质细线连接甲、乙两小球,中间夹一轻质弹簧,弹簧与甲、乙两球不拴接.甲球的质量为m1="0.1" kg,乙球的质量为m2="0.3" kg,甲、乙两球静止在光滑的水平面上。现固定甲球,烧断细线,乙球离开弹簧后进入半圆轨道恰好能通过D点。重力加速度g取10 m/s2,甲、乙两球可看作质点。
①试求细线烧断前弹簧的弹性势能;
②若甲球不固定,烧断细线,求乙球离开弹簧后进入半圆轨道能达到的最大高度;
【原创】如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后刚好从G点水平飞出,落到水平地面上Q点。不计空气阻力,重力加速度为g,求:
(1)落点Q点到B点的距离为x?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h;
(3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
设想有一宇航员在某未知星球的极地地区着陆时发现,同一物体在该地区的重力是地球上的重力的0.01倍.还发现由于星球的自转,物体在该星球赤道上恰好完全失重,且该星球上一昼夜的时间与地球上相同。则这未知星球的半径是多少?(取地球上的重力加速度 g=9.8 m/s2,π2=9.8,结果保留两位有效数字)
轻杆长L=1.5m,以一端为圆心,在竖直面内做圆周运动,杆另一端固定一个质量m=1.8kg小球,小球通过最高点时速率v=3m/s,求此时小球对杆的作用力大小及方向(g=10m/s2)。
长为L的细线,拴一质量为m的小球,一端固定于O点。让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示。当摆线L与竖直方向的夹角是时,求:
(1)线的拉力F;
(2)小球运动的线速度大小;
如图所示,滑块的质量m1="0.1" kg,用长为L的细线悬挂质量为m2="0.1" kg的小球,小球可视为质点,滑块与水平地面间及滑块与传送带间的动摩擦因数均为μ=0.2,滑块到小球及小球到传送带的距离均为s="2" m,传送带以v=4m/s的恒定速度匀速逆时针转动,传送带足够长。开始时,滑块以速度v0="8" m/s沿水平方向向右运动,并与小球发生弹性正碰,碰后小球能在竖直平面内做完整的圆周运动。问:
(1)细线长度L应该满足什么条件?
(2)若碰撞后小球恰能在竖直平面内完成完整的圆周运动并再次与滑块弹性正碰,则滑块与小球第一次碰撞后瞬间,悬线对小球的拉力多大?
(3)滑块从滑上传送带到从传送带上滑下,一共产生多少热量?(重力加速度g=10m/s2)
如图甲所示,倾斜光滑直轨道AB和一直径d=0.4m的光滑圆轨道BCD平滑连接,AB和BCD相切于B点,CD连线是圆轨道竖直方向的直径(C、D两点分别为圆轨道的最低点和最高点),且∠BOC=θ=37°。一质量m=0.1kg的小滑块(可视为质点)从轨道AB上高H处的某点由静止滑下。已知sin37°=0.6,cos37°=0.8。
(1)若小滑块刚好能通过圆轨道最高点D点,求此时的高度H;
(2)若用力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,请在如图乙中绘制出压力F与高度H的关系图象;
(3)通过计算判断是否存在某个H值,使得滑块经过最高点D后能直接落到直轨道AB上与圆心等高的点。
如图所示,在内壁光滑的平底试管内放一个质量为m=10g的小球, 试管的开口端加盖与水平轴O连接. 试管底与O相距L="5cm," 试管在转轴带动下沿竖直平面做匀速圆周运动。g取10m/s,求:
(1)小球从最低点到最高点过程,重力对小球做的功及小球重力势能的变化量;
(2)转轴的角速度达到多大时, 试管底所受压力的最大值等于最小值的3倍;
(3)转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况。
山谷中有三块大石头和一根不可伸长的青藤,其示意图如下。图中A、B、C、D均为石头的边缘点,O为青藤的固定点,h1=1.8m,h2=4.0m,x1=4.8m,x2=8.0m。开始时,质量分别为M=10kg和m=2kg的大小两只金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头A点起水平跳到中间石头,大猴抱起小猴跑到C点,抓住青藤的下端荡到右边石头的D点,此时速度恰好为零。运动过程中猴子均看成质点,空气阻力不计,重力加速度g=10m/s2,求:
(1)大猴子水平跳离的速度最小值
(2)猴子抓住青藤荡起时的速度大小
(3)荡起时,青藤对猴子的拉力大小
如图所示,长R=0.6m的不可伸长的细绳一端固定在O点,另一端系着质量m2=0.1kg的小球B,小球B刚好与水平面相接触。现使质量m1=0.3kg的物块A以vo=4m/s的速度向B运动,A与水平面间的接触面光滑。A、B碰撞后,物块A的速度变为碰前瞬间速度的,小球B能在竖直平面内做圆周运动。已知重力加速度g=l0m/s2,A、B均可视为质点。求:
①在A与B碰撞后瞬间,小球B的速度v2的大小;
②小球B运动到圆周最高点时受到细绳的拉力大小。
如图所示,粗糙水平面与半径的光滑圆弧轨道相切于点.静止于处的物体在大小为10、方向与水平面成37°角的推力作用下沿水平面运动,到达点时立刻撤去,物体沿光滑圆弧向上冲并越过点,然后返回经过处的速度.已知,,,.不计空气阻力.求:
(1)物体到达点时对轨道的压力;
(2)物体与水平面间的动摩擦因数.
如图所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径。一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°。不计空气阻力。已知重力加速度为g,sin37°=0.6,cos37°=0.8。
a.求电场强度E的大小;
b.若要使小球从P点出发能做完整的圆周运动,求小球初速度应满足的条件。
试题篮
()