如下图所示,水平地面上方的H高区域内有匀强磁场,水平界面PP′是磁场的上边界,磁感应强度为B,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd,ab长为l1,bc长为l2,H>l2,线框的质量为m、电阻为R.现使线框abcd从高处自由落下,ab边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab边到达边界PP′为止.从线框开始下落到cd边刚好到达水平地面的过程中,线框中产生的焦耳热为Q.求:
(1)线框abcd在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?
(2)线框是从cd边距边界PP′多高处开始下落的?
(3)线框的cd边到达地面时线框的速度大小是多少?
现在家家户户都安装了漏电保护器,有人认为它与保险丝的作用一样,用电器电流大时,它自动跳闸,起到保险丝的作用,只是不熔断。其实不是这样,它的作用与保险丝的作用完全不一样,它是只管漏电(跑电,与大地相连)而不管短路,当然,当电流大到某一极限值时它也跳闸。漏电保护器是保护人的生命安全的,一旦有人触电,它会立即跳闸,切断电源。它的原理图如图所示。当用电器一端有人触电(或漏电)时,套在闭合铁芯上的线圈就向传感器发出信号,通过自动电路,切断电源。试说明漏电保护器的原理。
如图所示,竖直平面内有一半径为、电阻为、粗细均匀的光滑半圆形金属环,在、处与相距为、电阻不计的平行光滑金属轨道、相接,之间接有电阻,已知=12,=4。 在MN上方及下方有水平方向的匀强磁场和,磁感应强度大小均为。现有质量为、电阻不计的导体棒,从半圆环的最高点处由静止下落,在下落 过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行轨道足够长。已知导体棒下落/2时的速度大小为,下落到处的速度大小为。
(1)求导体棒从下落/2时的加速度大小。
(2)若导体棒进入磁场Ⅱ后棒中电流大小始终不变,求磁场I和Ⅱ之间的距离和上的电功率。
(3)若将磁场Ⅱ的边界略微下移,导体棒刚进入磁场Ⅱ时速度大小为,要使其在外力作用下做匀加速直线运动,加速度大小为,求所加外力随时间变化的关系式。
电阻为R的矩形导线框abcd,边长ab=l、ad=h、质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图35-1所示.若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是多少.(不考虑空气阻力)
磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示。导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求
如果导轨和金属框均很光滑,金属框对地是否运动?运动性质如何?
如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度vm是多少?
如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能?
匀强磁场磁感应强度B=0.2T,磁场宽度L=3m,一个正方形铝金属框边长ab为l=1m,每边电阻均为r=0.2Ω,铝金属框以v =10m/s的速度匀速穿过磁场区域,其平面始终保持与磁感线方向垂直,如图所示,求:
(1)画出铝金属框穿过磁场区域的过程中,金属框内感应电流的I-t图象(取顺时针电流为正)以及cd两端点的电压 Ucd-t图象。
(2)求此过程线框中产生的焦耳热。
如图所示,在磁感应强度大小为B,方向垂直纸面向里的匀强磁场中,有一个质量为m、半径为r、电阻为R的均匀圆形导线圈,线圈平面跟磁场垂直(位于纸面内),线圈与磁场边缘(图中虚线)相切,切点为A,现在A点对线圈施加一个方向与磁场垂直,位于线圈平面内并跟磁场边界垂直的拉力F,将线圈以速度v匀速拉出磁场.以切点为坐标原点,以F的方向为正方向建立x轴,设拉出过程中某时刻线圈上的A点的坐标为x.
(1)写出力F的大小与x的关系式;
(2)在F-x图中定性画出F-x关系图线,写出最大值F0的表达式.
如图所示,一正方形平面导线框abcd,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a1b1c1d1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad边和a1d1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN和PQ均与ad边及a1d1边平行,两边界间的距离为h="78.40" cm.磁场方向垂直线框平面向里.已知两线框的边长均为l=" 40." 00 cm,线框abcd的质量为m1 =" 0." 40 kg,电阻为R1=" 0." 80Ω。线框a1 b1 c1d1的质量为m2 =" 0." 20 kg,电阻为R2 ="0." 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v="1.20" m/s匀速地进入磁场区域,不计空气阻力,重力加速度取g="10" m/s2.
(1)求磁场的磁感应强度大小.
(2)求ad边刚穿出磁场时,线框abcd中电流的大小.
在图甲中,直角坐标系xOy第1、3象限内有匀强磁场,第1象限内的磁感应强度大小为2B,第3象限内的磁感应强度大小为B,磁感应强度的方向均垂直于纸面向里.现将半径为l、圆心角为900的扇形导线框OPQ以角速度绕O点在纸面内沿逆时针匀速转动,导线框回路电限为R.
(1)求导线框中感应电流的最大值.
(2)在图乙中画出导线框匀速转动一周的时间内感应电流I随时间t变化的图象.(规定与图甲中线框的位置相对应的时刻为t=0,逆时针方向的电流为正方向)
(3)求线框匀速转动一周产生的热量.
有界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0. t0 = 0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v-t图象如图乙所示,图中斜向虚线为O点速度图线的切线,数据由图中给出,不考虚重力影响,求:
(1)磁场磁感应强度的变化率;
(2) t2时刻回路电功率.
如图所示,两根水平平行固定的光滑金属导轨宽为L,足够长,在其上放里两根长也为L且与导轨垂直的金属棒ab和cd,它们的质量分别为2m、m,电阻阻值均为R(金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B、方向竖直向下的匀强磁场中.
(1)现把金属棒ab锁定在导轨的左端,如图甲,对 cd施加与导轨平行的水平向右的恒力F,使金属棒cd向右沿导轨运动,当金属棒cd的运动状态稳定时,金属棒cd的运动速度是多大?
(2)若对金属棒ab解除锁定,如图乙,使金属棒cd获得瞬时水平向右的初速度v0,当它们的运动状态达到稳定的过程中,流过金属棒ab的电量是多少?整个过程中ab和cd相对运动的位移是多大?
如图所示,螺线管与相距L的两竖直放置的导轨相连,导轨处于垂直纸面向外、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。已知金属杆ab的质量为m,电阻为R2,重力加速度为g.不计导轨的电阻,不计空气阻力,忽略螺线管磁场对杆ab的影响。
(1)为使ab杆保持静止,求通过ab的电流的大小和方向;
(2)当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
(3)若螺线管内方向向左的磁场的磁感应强度的变化率(k>0)。将金属杆ab由静止释放,杆将向下运动。当杆的速度为v时,仍在向下做加速运动。求此时杆的加速度的大小。设导轨足够长。
如图所示,两根足够长的直金属导轨MN、PQ平行放里在倾角为的绝缘斜面上,两导轨间距为L。 M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于匀强磁场中,磁场方向垂直于斜面向上.导轨和金属杆的电阻可忽略.让金属杆ab沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm,在这个过程中,电阻R上产生的热量为Q.导轨和金属杆接触良好,它们之间的动摩擦因数为,且<tan。已知重力加速度为g。
(1)求磁感应强度的大小;
(2)金属杆在加速下滑过程中,当速度达到时,求此时杆的加速度大小;
(3)求金属杆从静止开始至达到最大速度的过程中下降的高度.
一个直流电动机的内电阻,与R=8的电阻串联接在线圈上,如图所示。已知线圈面积为m2,共100匝,线圈的电阻为2欧,线圈在T的匀强磁场中绕O以转速n=600r/min匀速转动时,在合上开关S后电动机正常工作时,电压表的示数为100V,求电动机正常工作时的输出功率。
试题篮
()