如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点A(0,L)。一质量为m、电荷量为e的电子从A点以初速度v0平行于x轴正方向射入磁场,并从x轴上的B点射出磁场,射出B点时的速度方向与x轴正方向的夹角为60°。求:
(1)匀强磁场的磁感应强度B的大小;
(2)电子在磁场中运动的时间t。
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°.一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求:
(1)画出粒子在磁场Ⅰ和Ⅱ中的运动轨迹;
(2)粒子在磁场Ⅰ和Ⅱ中的轨道半径R1和R2比值;
(3)Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).
有一等腰直角ABC三角形区域,直角边长为。在该区域,有一垂直纸面向内磁感应强度为的匀强磁场。一束质量为、电荷量为,带负电粒子以不同速度从中点垂直直角边射入该磁场区域,在另一直角边放置一块荧光屏,如图所示。重力不计,求
(1)当粒子以入射时,求粒子在荧光屏上光斑的位置及在磁场中运动的时间。
(2)荧光屏AB区域上光斑的分布区域。
(3)若把磁场更换成沿AC方向的场强为E的匀强电场,当粒子以入射时,求粒子在荧光屏上光斑的位置
(4)把磁场更换成沿AC方向的场强为E的匀强电场,荧光屏AB区域上光斑的分布区域。
如图所示,有一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd的中点,如果在a点沿对角线方向以速度v射入一带负电的带电粒子(带电粒子重力不计),恰好从e点射出,则
A.如果粒子的速度增大为原来的二倍,将从d点射出 |
B.如果粒子的速度增大为原来的三倍,将从f点射出 |
C.如果粒子的速度不变,磁场的磁感应强度变为原来的二倍,也将从d点射出 |
D.只改变粒子的速度使其分别从e、d、f点射出时,从e点射出所用时间最短 |
如图所示,水平放置的平行板电容器间有垂直纸面向里的匀强磁场,开关S闭合时一带电粒子恰好水平向右匀速穿过两板,重力不计。对相同状态入射的粒子,下列说法正确的是
A.保持开关闭合,若滑片P向上滑动,粒子不可能从极板边缘射出 |
B.保持开关闭合,若滑片P向下滑动,粒子不可能从极板边缘射出 |
C.保持开关闭合,若A极板向上移动后,调节滑片P的位置,粒子仍可能沿直线射出 |
D.如果开关断开,粒子继续沿直线射出 |
如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是
A.OAB轨迹为半圆 |
B.小球运动至最低点A时速度最大,且沿水平方向 |
C.小球在整个运动过程中机械能增加 |
D.小球在A点时受到的洛伦兹力与重力大小相等 |
图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y轴上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q, 不计其重力。则上述粒子的比荷(C/kg) 是
A. | B.4.9× | C. | D. |
质量和电量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图两种虚线所示,下列表述正确的是( )[
A.M带负电,N带正电 |
B.M的速率小于N的速率 |
C.洛伦兹力对M、N做正功 |
D.M的运行时间大于N的运行时间 |
如图所示,在x轴上方存在垂直于纸面向里的足够宽的匀强磁场,磁感应强度为B。在xoy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是
A.若v一定,θ越大,则粒子在磁场中运动的时间越短
B.若v一定,θ越大,则粒子在离开磁场的位置距O点越远
C.若θ一定,v越大,则粒子在磁场中运动的角速度越大
D.若θ一定,v越大,则粒子在磁场中运动的时间越短
如图所示,在的空间中有恒定的匀强磁场,磁感强度的方向垂直于Oxy平面向里,大小为B。现有一质量为m电量为q的带电粒子(不计重力),在x轴上到原点的距离为的P点,以平行于y轴的初速度射入此磁场,在磁场力作用下沿垂直于y轴的方向射出此磁场。由这些条件可知
A.带电粒子一定带正电
B.不能确定粒子速度的大小
C.不能确定粒子射出此磁场的位置
D.不能确定粒子在此磁场中运动所经历的时间
如图所示,电子显像管由电子枪、加速电场、偏转磁场及荧光屏组成。在加速电场右侧有相距为D.长为L的两平板,两平板构成的矩形区域内存在方向垂直纸面向外的匀强磁场,磁场的右边界与荧光屏之间的距离也为d。荧光屏中点O与加速电极上两小孔S1、S2位于两板的中线上。从电子枪发射质量为m、电荷量为 –e的电子,经恒定电压为U0的加速电场后从小孔S2射出,经磁场偏转后,最后打到荧光屏上。若,不计电子在进入加速电场前的速度。
(1)求电子进入磁场时的速度大小;
(2)电子到达荧光屏的位置与O点距离有最大值,求此时磁感应强度B的大小;
如图(甲)所示,某粒子源向外放射出一个α粒子,粒子速度方向与水平成30°角,质量为m,电荷量为+q。现让其从粒子源射出后沿半径方向射入一个磁感应强度为B、区域为圆形的匀强磁场(区域Ⅰ)。经该磁场偏转后,它恰好能够沿y轴进入下方的平行板电容器,并运动至N板且恰好不会从N板的小孔P射出电容器。已知平行板电容器与一边长为L的正方形单匝导线框相连,其内有垂直框面的磁场(区域Ⅱ),磁场变化如图(乙)所示。不计粒子重力,求:
(1)磁场区域Ⅱ磁场的方向及α粒子射出粒子源的速度大小;
(2)圆形磁场区域的半径;
(3)α粒子在磁场中运动的总时间。
在xOy平面上以O为圆心、半径为r的圆形区域内,存在磁感应强度为B的匀强磁场,磁场方向垂直于xOy平面.一个质量为m、电荷量为q的带电粒子,从原点O以初速度v沿y轴正方向开始运动,经时间t后经过x轴上的P点,此时速度与x轴正方向成θ角,如图所示.不计重力的影响,则下列关系一定成立的是( ).
A.若r<,则0°<θ<90° | B.若r≥,则t≥ |
C.若t=,则r= | D.若r=,则t= |
如图是某屏蔽高能粒子辐射的装置,铅盒左侧面中心O有一放射源可通过铅盒右侧面的狭缝MQ向外辐射粒子,铅盒右侧有一左右边界平行的匀强磁场区域。过O的截面MNPQ位于垂直磁场的平面内,OH垂直于MQ。已知α粒子质量m=6.64×10-27kg,电量q=3.20×10-19C,速率v=1.28×107m/s;磁场的磁感应强度B="0.664" T,方向垂直于纸面向里;粒子重力不计,忽略粒子间的相互作用及相对论效应,sin 530 ="0." 8,cos 530=0.60
(1)求垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间t;
(2)若所有粒子均不能从磁场右边界穿出,达到屏蔽作用,求磁场区域的最小宽度d;
(3)求满足(2)条件的所有粒子在磁场中运动的最长时间和最短时间的比值tmax:tmin。
试题篮
()