如图所示是某粒子速度选择器截面的示意图,在一半径为R=10cm的圆柱形桶内有的匀强磁场,方向平行于轴线,在圆柱桶某一截面直径的两端开有小孔,作为入射孔和出射孔,粒子束以不同角度入射,最后有不同速度的粒子束射出。现有一粒子源发射比荷为的正粒子,粒子束中速度分布连续。当角时,出射粒子速度v的大小是( )
A. | B. | C. | D. |
(18分)如图所示,在平面直角坐标系中的三角形FGH区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B,三点坐标分别为F( -3L,5L)、G( -3L, -3L)、H(5L,-3L)。坐标原点O处有一体积可忽略的粒子发射装置,能够连续不断的在该平面内向各个方向均匀的发射速度大小相等的带正电的同种粒子,单位时间内发射粒子数目稳定。粒子的质量为m,电荷量为q,不计粒子间的相互作用以及粒子的重力。
(1)速率在什么范围内所有粒子均不可能射出该三角形区域?
(2)如果粒子的发射速率为,设在时间t内粒子源发射粒子的总个数为N,在FH边上安装一个可以吸收粒子的挡板,那么该时间段内能够打在挡板FH上的粒子有多少?并求出挡板上被粒子打中的长度。
如图所示,在真空中,半径为R的虚线所围的圆形区域内只存在垂直纸面向外的匀强磁场。有一电荷量为q、质量为m的带正电粒子,以速率V0从圆周上的P点沿垂直于半径OOl并指向圆心O的方向进入磁场,从圆周上的O1点飞出磁场后沿两板的中心线O1O2射入平行金属板M和N, O1O2与磁场区域的圆心O在同一直线上。板间存在匀强电场,两板间的电压为U,两板间距为d。不计粒子所受重力。求:
(1)磁场的磁感应强度B的大小;
(2)粒子在磁场中运动的时间;
(3)粒子在两平行板间运动过程中的最大速度与板长L的关系。
如图所示,MN、PQ是平行金属板,板长为L,两板间距离为,
PQ板带正电,MN板带负电,在PQ板的上方有垂直纸面向里的匀强磁场.一个电荷量为q、质量为m的带负电粒子以速度从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场.不计粒子重力.求:
(1)两金属板间所加电场的场强大小;
(2)匀强磁场的磁感应强度B的大小.
如图所示,带有正电荷的A粒子和B粒子同时以同样大小的速度从宽度为d的有界匀强磁场的边界上的O点分别以30°和60°(与边界的夹角)射入磁场,又恰好都不从另一边界飞出,则下列说法中正确的是
A.A、B两粒子在磁场中做圆周运动的半径之比是
B.A、B两粒子在磁场中做圆周运动的半径之比是
C.A、B两粒子的之比是
D.A、B两粒子的之比是
如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且ML被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:
(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
两个电荷量分别为+q和-q的带电粒子分别以速度va和vb射入匀强磁场,两粒子的入射方向与竖直磁场边界的夹角分别为30°和60°,磁场宽度为d,两粒子同时由A点出发,同时到达与A等高的B点,如图所示,则( )
A.a粒子带正电,b粒子带负电 |
B.两粒子的轨道半径之比Ra∶Rb=∶1 |
C.两粒子的质量之比ma∶mb=1∶2 |
D.两粒子的速度之比va∶vb=∶2 |
如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电量为q的带正电粒子,从在x轴上的某点P沿着与x轴成30°角的方向射入磁场。不计重力影响,则下列说法中正确的是( )
A.粒子在磁场中运动所经历的时间可能为
B.粒子在磁场中运动所经历的时间可能为
C.粒子在磁场中运动所经历的时间可能为
D.粒子一定不能通过坐标原点
如图所示,等腰直角三角形ACD的直角边长为2a,P为AC边的中点,Q为CD边上的一点,DQ=a.在△ACD区域内,既有磁感应强度大小为B、方向垂直纸面向里的匀强磁场,又有电场强度大小为E的匀强电场,一带正电的粒子自P点沿平行于AD的直线通过△ACD区域,不计粒子的重力.
(1)求电场强度的方向和粒子进入场区的速度大小v0;
(2)若仅撤去电场,粒子仍以原速度自P点射入磁场,从Q点射出磁场,求粒子的比荷;
有一带电量为+q,质量为m的带电粒子,沿如图所示的方向,从A点沿着与边界夹角30°、并且垂直磁场的方向,进入到磁感应强度为B的匀强磁场中,已知磁场的上部没有边界,若离子的速度为v,则该粒子离开磁场时,距离A点的距离( )
A. | B. | C. | D. |
如图所示,以O为圆心、MN为直径的圆的左半部分内有垂直纸面向里的匀强磁场,三个不计重力、质量相同、带电量相同的带正电粒子a、b和c以相同的速率分别沿aO、bO和cO方向垂直于磁场射入磁场区域,已知bO垂直MN,aO、cO和bO的夹角都为30°,a、b、c三个粒子从射入磁场到射出磁场所用时间分别为ta、tb、tc,则下列给出的时间关系可能正确的是(AD)
A.ta<tb<tc B.ta>tb>tc C.ta=tb<tc D.ta=tb=tc
(9分) 如图所示,在空间中存在垂直纸面向外、宽度为d的有界匀强磁场.一质量为m,带电荷量为q的粒子自下边界的P点处以速度v沿与下边界成30°角的方向垂直射入磁场,恰能垂直于上边界射出,不计粒子重力,题中d、m、q、v均为已知量.则:
(1)粒子带何种电荷?
(2)磁场的磁感应强度为多少?
在一个边界为等边三角形的区域内,存在一个方向垂直于纸面向里的匀强磁场,在磁场边界上的P点处有一个粒子源,发出比荷相同的三个粒子a、b、c(不计重力)沿同一方向进入磁场,三个粒子通过磁场的轨迹如图所示,用ta、tb、tc分别表示a、b、c通过磁场的时间;用ra、rb、rc分别表示a、b、c在磁场中的运动半径,则下列判断正确的是( )
A.ta=tb>tc | B.tc>tb>ta | C.rc>rb>ra | D.rb>ra>rc |
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q="1." 0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
试题篮
()