优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中物理试题 / 计算题
高中物理

如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=2kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.6m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=1.2m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.1,重力加速度g取10 m/s2,求:

(1)水平轨道BC长度;
(2)小车不固定时物块再次与小车相对静止时距小车B点的距离;
(3)两种情况下由于摩擦系统产生的热量之比.

  • 题型:未知
  • 难度:未知

如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短)。

(1)求A滑过Q点时的速度大小v和受到的弹力大小F;
(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;

  • 题型:未知
  • 难度:未知

(1)在物理学发展史上,许多科学家通过恰当应用科学研究方法,超越了当时研究条件的局限和传统观念,取得了辉煌的研究成果,下列符合物理学史实的是        
A.牛顿由理想斜面实验通过逻辑推理否定了力是维持物体运动的原因的观点。
B.19世纪以前,对相隔一定距离的电荷或磁体间的作用不少人持超距作用的观点,在19世纪30年代,法拉第提出电场或磁场的观点。
C.人们从电荷间的作用力与引力的相似性中提出“平方反比”的猜想,这一科学问题是由法国科学家库仑通过库仑扭秤实验完成的
D.安培首先引入电场线和磁感线,极大地推动了电磁现象的研究。
E.牛顿通过著名的“月地检验”,突破天地之间的束缚,使得万有引力定律成为科学史上最伟大定律之一。
(2)微波实验是近代物理实验室中的一个重要部分.反射式速调管是一种结构简单、实用价值较高的常用微波器件之一,它是利用电子团与场相互作用在电场中发生振荡来产生微波,其振荡原理与下述过程类似.如图1所示,在虚线MN两侧分布着方向平行于x轴的电场,其电势φ随x的分布可简化为如图2所示的折线.一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知带电微粒质量m=1.0×10﹣20 kg,带电荷量q=﹣1.0×10﹣9 C,A点距虚线MN的距离d1=1.0cm,不计带电微粒的重力,忽略相对论效应.求:

①B点距虚线MN的距离d2
②带电微粒在A、B之间震荡的周期T.

  • 题型:未知
  • 难度:未知

如图所示,绝缘水平板面上,相距为L的A、B两个点分别固定着等量正点电荷.O为AB连线的中点,C、D是AB连线上的两点,AC=CO=OD=OB=1/4L.一质量为m=0.1kg、电量为q=+110-2C的小滑块(可视为质点)以初动能E0=0.5J从C点出发,沿直线AB向D运动,滑动第一次经过O点时的动能为2E0,第一次到达D点时动能恰好为零,小滑块最终停在O点,(设阻力大小恒定,且在小滑块速度为0时无阻力,取g=10m/s2)求:

(1)小滑块与水平板面之间的阻力f
(2)OD两点间的电势差UOD;
(3)小滑块运动的总路程s.

  • 题型:未知
  • 难度:未知

如图所示,在直角坐标系中,第二象限有一水平放置的平行板电容器,两板间距离为d,下极板与x轴重合,板间有图示方向的匀强磁场,磁感应强度为B,一带电粒子(不计重力)沿两板间中线射入并沿中线进入第一象限,若在第一象限只存在与y轴平行的匀强电场时,粒子刚好通过x轴上的M点(=d),若在第一象限只存在垂直于纸面的匀强磁场时,粒子也刚好通过M点,已知该电场强度和磁感应强度的比值为k,求:平行板电容器两极板间的电压为多少?

  • 题型:未知
  • 难度:未知

如图所示,跨过定滑轮的轻绳两端分别系着物体A和B,物体A放在倾角为θ的斜面上。已知物体A的质量为mA,物体A与斜面间的最大静摩擦力是与斜面间弹力的μ倍(μ<tanθ),滑轮与轻绳间的摩擦不计,绳的OA段平行于斜面,OB段竖直,要使物体A静止在斜面上,则物体B质量的最大值为多少?

  • 题型:未知
  • 难度:未知

如图所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻R,磁感应强度为B,一根质量为m、电阻不计的金属棒以v0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q求:

(1)棒能运动的距离;
(2)R上产生的热量.

  • 题型:未知
  • 难度:未知

如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为,半圆形轨道的底端放置一个质量为的小球B,水平面上有一个质量为的小球A以初速度开始向着木块B滑动,经过时间与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数,求:

(1)两小球碰前A的速度;
(2)小球B运动到最高点C时对轨道的压力
(3)确定小球A所停的位置距圆轨道最低点的距离。

  • 题型:未知
  • 难度:未知

如图所示,水平虚线x下方区域分布着方向水平、垂直纸面向里、磁感应强度为B的匀强磁场,整个空间存在匀强电场(图中未画出)。质量为m,电荷量为+q的小球P静止于虚线x上方A点,在某一瞬间受到方向竖直向下、大小为I的冲量作用而做匀速直线运动。在A点右下方的磁场中有定点O,长为l的绝缘轻绳一端固定于O点,另一端连接不带电的质量同为m的小球Q,自然下垂。保持轻绳伸直,向右拉起Q,直到绳与竖直方向有一小于50的夹角,在P开始运动的同时自由释放Q,Q到达O点正下方W点时速率为v0。P、Q两小球在W点发生正碰,碰后电场、磁场消失,两小球粘在一起运动。P、Q两小球均视为质点,P小球的电荷量保持不变,绳不可伸长,不计空气阻力,重力加速度为g。

(1)求匀强电场场强E的大小和P进入磁场时的速率v;
(2)若绳能承受的最大拉力为F,要使绳不断,F至少为多大?
(3)若P与Q在W点相向(速度方向相反)碰撞时,求A点距虚线X的距离s。、

  • 题型:未知
  • 难度:未知

如图所示,一足够长的斜面倾斜角度为,现有一个质量为0.4 kg,带电荷量的小球以初速度v0="5" m/s从斜面上A点竖直向上抛出。已知斜面所在的整个空间存在水平向右的匀强电场,电场强度为,重力加速度g=10m/s2。试求:

(1)小球在空中运动过程中速度的最小值
(2)小球相对A所在水平面上升的最大高度H和小球再次落到与A在同一水平面的B点(图上未标出)时,小球距离A点的距离LAB
(3)小球再次落到斜面上时,速度方向与水平向右电场方向夹角的正切值。
(4)小球在空中运动过程中距离斜面最远的距离d

  • 题型:未知
  • 难度:未知

一长为L的细线,上端固定,下端栓一质量为m、带电荷量为q的小球,处于如图所示的水平向右的匀强电场中,开始时,将线与小球拉成水平,然后释放,小球由静止开始向下摆动,当细线转过60°角时,小球到达B点速度恰好为零,求:

(1)AB两点的电势差
(2)匀强电场的场强大小
(3)小球到达B点时,细线对小球的拉力大小

  • 题型:未知
  • 难度:未知

如图所示,地面和半圆轨道面均光滑.质量M=1kg、长L=4m的小车放在地面上,其右端与墙壁的距离为S=3m,小车上表面与半圆轨道最低点P的切线相平.现有一质量m=2kg的滑块(不计大小)以v0=6m/s的初速度滑上小车左端,带动小车向右运动.小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2

(1)求小车与墙壁碰撞时的速度;
(2)要滑块能沿圆轨道运动而不脱离圆轨道,求半圆轨道的半径R的取值.

  • 题型:未知
  • 难度:未知

如图所示,在xoy平面内,有一个圆形区域的直径AB 与x轴重合,圆心O′的坐标为(2a,0),其半径为a,该区域内无磁场. 在y轴和直线x=3a之间的其他区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为q的带正电的粒子从y轴上某点射入磁场.不计粒子重力.

(1)若粒子的初速度方向与y轴正向夹角为60°,且粒子不经过圆形区域就能到达B点,求粒子的初速度大小v
(2)若粒子的初速度方向与y轴正向夹角为60°,在磁场中运动的时间为且粒子也能到达B点,求粒子的初速度大小v
(3)若粒子的初速度方向与y轴垂直,且粒子从O′点第一次经过x轴,求粒子的最小初速度v

  • 题型:未知
  • 难度:未知

如图所示,水平绝缘地面上有一底部带有小孔的绝缘弹性竖直挡板AC,板高,与A端等高处有一水平放置的篮筐,圆形筐口的圆心M离挡板的距离,AC左端及A端与筐口的连线上方存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度;现有一质量、电量、直径略小于小孔宽度的带电小球(视为质点),以某一速度从C端水平射入场中做匀速圆周运动,若球可直接从M点落入筐中,也可与AC相碰后从M点落入筐中,且假设球与AC相碰后以原速率沿碰前速度的反方向弹回,碰撞时间不计,碰撞时电荷量不变,忽略小球运动对电场、磁场的影响()。求:

(1)电场强度的大小与方向;
(2)小球运动的最大速率;
(3)若小球与AC碰撞后从M点落入筐中,求小球运动时间最长时到达M点速度方向与水平方向夹角的正弦值。

  • 题型:未知
  • 难度:未知

一般教室的门上都按装一种暗锁,这种暗锁由外壳A.骨架B.弹簧C(劲度系数为)、锁舌D(倾斜角θ=45°,质量忽略不计)、锁槽E以及连杆、锁头等部件组成,如图甲所示(俯视图)。设锁舌D与外壳A和锁槽E之间的摩擦因数均为μ且最大静摩擦力与滑动摩擦力相等。有一次放学后,小明准备锁门,当他用某力拉门时,不能将门关上,此刻暗锁所处的状态如图乙所示,P为锁舌D与锁槽E之间的接触点,弹簧由于被压缩而缩短了,问:

(1)此时,外壳A对所舌D的摩擦力的方向。
(2)此时,锁舌D与锁槽E之间的正压力的大小。
(3)当满足一定条件时,无论用多大的力,也不能将门关上(这种现象称为自锁)。求暗锁能够保持自锁状态时μ的取值范围。

  • 题型:未知
  • 难度:未知

高中物理计算题