如图所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO匀速转动,规定经过圆心D点且水平向右为礴由正方向。在D点正上方距盘面高为h=1.25m处有一个可间断滴水的容器,从t=0时刻开始.容器沿水平轨道向X轴正方向做初速度为零的匀加速直线运动。已知t=0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水。则:(取g=l0m/s2)
(1)每一滴水离开容器后经过多长时间滴落到盘面上?
(2)要使每一滴水在盘面上的落点都位于同一直线上,圆盘的角速度应为多大?
(3)当圆盘的角速度为2πrad/s时,第二滴水与第三滴水在盘面上落点间的距离2m,求容器的加速度a为多少?
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知万有引力常量为G,太阳的质量为M太.
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月球到地球中心距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质量M地.(G=6.67×10-11N·m2/kg2,结果保留一位有效数字)
如题图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B的均匀磁场,其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架ΔDEF,其中心O位于圆柱的轴线上.DE边上S点()处有一发射带电粒子的源,发射粒子的方向皆在题图中截面内且垂直于DE边向下。发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。若这些粒子与三角形框架的碰撞无能量损失(不能与圆柱壁相碰),电量也无变化,且每一次碰撞时速度方向均垂直于被碰的边。试问:
(1)带电粒子经多长时间第一次与DE边相碰?
(2)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?
一长为L的细线,上端固定,下端栓一质量为m、带电荷量为q的小球,处于如图所示的水平向右的匀强电场中,开始时,将线与小球拉成水平,然后释放,小球由静止开始向下摆动,当细线转过60°角时,小球到达B点速度恰好为零,求:
(1)AB两点的电势差
(2)匀强电场的场强大小
(3)小球到达B点时,细线对小球的拉力大小
(15分)如图甲所示,在水平地面上固定一对与水平面倾角为α的光滑平行导电轨道,轨道间的距离为l,两轨道底端的连线与轨道垂直,顶端接有电源.将一根质量为m的直导体棒ab放在两轨道上,且与两轨道垂直.已知轨道和导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为I,方向由a到b,图乙为图甲沿a → b方向观察的平面图.若重力加速度为g,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止.
⑴ 请在图乙所示的平面图中画出导体棒受力的示意图;
⑵ 求出磁场对导体棒的安培力的大小;
⑶ 如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度B的最小值的大小和方向.
如图所示,在水平轨道右侧安放半径为R=0.2m的竖直圆形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为L=1m,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然状态.质量为m=1kg的小物块A(可视为质点)从轨道右侧以初速度v0=2 m/s冲上轨道,通过圆形轨道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.物块A与PQ段间的动摩擦因数μ=0.2,轨道其他部分摩擦不计,重力加速度g=10m/s2.求:
(1)物块A与弹簧刚接触时的速度大小v1;
(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度h1;
(3)调节PQ段的长度L,A仍以v0从轨道右侧冲上轨道,当L满足什么条件时,物块A能第一次返回圆形轨道且能沿轨道运动而不脱离轨道.
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。
有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为θ=37°,置于垂直于轨道平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数μ=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Ω.(g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?
(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?
(12分)在一段平直的公路上,质量为2×103 kg的汽车从静止开始做匀加速运动,经过2 s,速度达到10 m/s。随后汽车以P=6×104 W的额定功率沿平直公路继续前进,又经过50 s达到最大速度。设汽车所受的阻力恒定,大小为1.5×103 N。求:
(1)汽车行驶的最大速度的大小。
(2)汽车的速度为20 m/s时的加速度大小。
(3)汽车从静止到达到最大速度所经过的路程。
在示波管中,电子通过电子枪加速,进入偏转电场,然后射到荧光屏上,如图所示,设电子的质量为m(不考虑所受重力),电荷量为e,从静止开始,经过加速电场加速,加速电场电压为U1,然后进入偏转电场,偏转电场中两板之间的距离为d,板长为L,偏转电压为U2,求电子射到荧光屏上的动能为多大?
如图所示,两平行金属板A、B长L=8cm,两板间距离d=8cm,A板比B板电势高300V,一带正电的粒子电荷量q=10-10C,质量m=10-20kg,沿电场中心线RO垂直电场线飞入电场,初速度υ0=2×106m/s,粒子飞出平行板电场后进入界面MN、PS间的无电场区域,已知两界面MN、PS相距为S1=12cm,D是中心线RO与界面PS的交点,O点在中心线上,(不计粒子的重力)
(1)求粒子穿过界面MN时偏离中心线RO的距离多远?
(2)到达PS界面时离D点多远?
如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短)。
(1)求A滑过Q点时的速度大小v和受到的弹力大小F;
(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;
如图所示,跨过定滑轮的轻绳两端分别系着物体A和B,物体A放在倾角为θ的斜面上。已知物体A的质量为mA,物体A与斜面间的最大静摩擦力是与斜面间弹力的μ倍(μ<tanθ),滑轮与轻绳间的摩擦不计,绳的OA段平行于斜面,OB段竖直,要使物体A静止在斜面上,则物体B质量的最大值为多少?
如图所示,从电子枪射出的电子束(初速度不计)经电压加速后,从一对金属板Y和正中间平行金属板射入,电子束穿过两板空隙后最终垂直打在荧光屏上的O点。若现在用一输出电压为的稳压电源与金属板连接,在间产生匀强电场,使得电子束发生偏转。若取电子质量为,两板间距,板长,板的末端到荧光屏的距离,整个装置处于真空中,不考虑重力的影响,试回答以下问题:
(1)电子束射入金属板时速度为多大?
(2)加上电压后电子束打到荧光屏上的位置到O点的距离为多少?
(3)如果两金属板间的距离可以随意调节(保证电子束仍从两板正中间射入),其它条件都不变,试求电子束打到荧光屏上的位置到O点距离的取值范围。
试题篮
()