竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。
时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A运动的
图像如图(b)所示,图中的
和
均为未知量。已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。
(1)求物块B的质量;
(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;
(3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。求改变前面动摩擦因数的比值。
如图,在直角三角形
区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外。一带正电的粒子从静止开始经电压U加速后,沿平行于x辅的方向射入磁场;一段时间后,该粒子在
边上某点以垂直于
轴的方向射出。已知
点为坐标原点,N点在y轴上,
与
轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力。求:
(1)带电粒子的比荷;
(2)带电粒子从射入磁场到运动至 轴的时间。
(1)用一个摆长为 的单摆做实验,要求摆动的最大角度小于 ,则开始时摆球拉离平衡位置的距离应不超过 (保留1位小数)。(提示:单摆被拉开小角度的情况下,所求的距离约等于摆球沿圆弧移动的路程。 某同学想设计一个新单摆,要求新单摆摆动10个周期的时间与原单摆摆动11个周期的时间相等。新单摆的摆长应该取为 。
(2)直角棱镜的折射率 ,其横截面如图所示,图中 , .截面内一细束与 边平行的光线,从棱镜 边上的 点射入,经折射后射到 边上。
光线在 边上是否会发生全反射?说明理由;
不考虑多次反射,求从 边射出的光线与最初的入射光线夹角的正弦值。
(1)下列关于能量转换过程的叙述,违背热力学第一定律的有 ,不违背热力学第一定律、但违背热力学第二定律的有 。(填正确答案标号)
A. |
.汽车通过燃烧汽油获得动力并向空气中散热 |
B. |
.冷水倒入保温杯后,冷水和杯子的温度都变得更低 |
C. |
.某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响 |
D. |
.冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内 |
(2)潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似。潜水钟在水下时其内部上方空间里存有空气,以满足潜水员水下避险的需要。为计算方便,将潜水钟简化为截面积为 、高度为 、开口向下的圆筒;工作母船将潜水钟由水面上方开口向下吊放至深度为 的水下,如图所示。已知水的密度为 ,重力加速度大小为 ,大气压强为 , ,忽略温度的变化和水密度随深度的变化。
求进入圆筒内水的高度 ;
保持 不变,压入空气使筒内的水全部排出,求压入的空气在其压强为 时的体积。
一细绳跨过悬挂的定滑轮,两端分别系有小球 和 ,如图所示。一实验小组用此装置测量小球 运动的加速度。令两小球静止,细绳拉紧,然后释放小球,测得小球 释放时的高度 ,下降一段距离后的高度 ;由 下降至 所用的时间 。由此求得小球 加速度的大小为 (保留3位有效数字)。从实验室提供的数据得知,小球 、 的质量分别为 和 ,当地重力加速度大小为 .根据牛顿第二定律计算可得小球 加速度的大小为 (保留3位有效数字)。可以看出, 与 有明显差异,除实验中的偶然误差外,写出一条可能产生这一结果的原因: 。
某游乐园入口旁有一喷泉, 喷出的水柱将一质量为 的卡通玩具稳定地悬停在 空中。为计算方便起见,假设水柱从横截面积为 的喷口持续以速度 v0 竖直向上喷出; 玩具 底部为平板(面积略大于 ); 水柱冲击到玩具底板后, 在竖直方向水的速度变为零, 在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为 , 重力加速度大小为 求
(i) 喷泉单位时间内喷出的水的质量;
(ii)玩具在空中悬停时, 其底面相对于喷口的高度。
[物理——选修 3-3]
在水下气泡内空气的压强大于气泡表面外侧水的压强, 两压强差 与气泡半径
之间的关系为 , 其中 。现让水下 处一半径为 的气泡缓慢上升,已知大气压强 , 水的密度 , 重力加速度大小 。
(i) 求在水下 处气泡内外的压强差;
(ii)忽略水温随水深的变化, 在气泡上升到十分接近水面时, 求气泡的半径与其原来半径之 比的近似值。
如图, 两固定的绝缘斜面倾角均为 , 上沿相连。两细金属棒 (仅标出 a 端 和 (仅标出 端)长度均为 , 质量分别为 和 ; 用两根不可伸长的柔软导线将它们连 成闭合回路 abdca, 并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上, 使两金属棒 水平。右斜面上存在匀强磁场, 磁感应强度大小为 , 方向垂直于斜面向上,已知两根导线刚 好不在磁场中, 回路电阻为 , 两金属棒与斜面间的动摩擦因数均为 , 重力加速度大小为 , 已知金属棒 匀速下滑。
求:(1)作用在金属棒 上的安培力的大小;
(2) 金属棒运动速度的大小。
用插针法测量上、下表面平行的玻璃砖的折射率。实验中用A、B两个大头针确定入射光路,C、D两个大头针确定出射光路, 和 分别是入射点和出射点。如图(a)所示。测得玻璃砖厚度为 ;A到过 点的法线 的距离 , 到玻璃砖的距离 , 到 的距离为 。
(ⅰ)求玻璃砖的折射率;
(ⅱ)用另一块材料相同,但上下两表面不平行的玻璃砖继续实验,玻璃砖的截面如图(b)所示。光从上表面入射,入射角从 逐渐增大,达到 时,玻璃砖下表面的出射光线恰好消失。求此玻璃砖上下表面的夹角。
图中实线为一列简谐横波在某一时刻的波形曲线,经过 后,其波形曲线如图中虚线所示。已知该波的周期 大于 。若波是沿 轴正方向传播的,则该波的速度大小为 ,周期为 ;若波是沿 轴负方向传播的,该波的周期为 。
如图,一倾角为α的光滑固定斜面的顶端放有质量 的 形导体框,导体框的电阻忽略不计;一电阻 的金属棒 的两端置于导体框上,与导体框构成矩形回路 ; 与斜面底边平行,长度 。初始时 与 相距 ,金属棒与导体框同时由静止开始下滑,金属棒下滑距离 后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的 边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小 ,重力加速度大小取 , 。求
(1)金属棒在磁场中运动时所受安培力的大小;
(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;
(3)导体框匀速运动的距离。
一篮球质量为 ,一运动员使其从距地面高度为 处由静止自由落下,反弹高度为 。若使篮球从距地面 的高度由静止下落,并在开始下落的同时向下拍球,球落地后反弹的高度也为 。假设运动员拍球时对球的作用力为恒力,作用时间为 ;该篮球每次与地面碰撞前后的动能的比值不变。重力加速度大小取 ,不计空气阻力。求:
(1)运动员拍球过程中对篮球所做的功;
(2)运动员拍球时对篮球的作用力的大小。
某同学利用图(a)所示装置研究平抛运动的规律。实验时该同学使用频闪仪和照相机对做平抛运动的小球进行拍摄,频闪仪每隔 发出一次闪光,某次拍摄后得到的照片如图(b)所示(图中未包括小球刚离开轨道的影像)。图中的背景是放在竖直平面内的带有方格的纸板,纸板与小球轨迹所在平面平行,其上每个方格的边长为 该同学在实验中测得的小球影像的高度差已经在图(b)中标出。
完成下列填空:(结果均保留2位有效数字)
(1)小球运动到图(b)中位置A时,其速度的水平分量大小为 m/s;竖直分量大小为 m/s;
(2)根据图(b)中数据可得,当地重力加速度的大小为 m/s 2。
(1)如图,单色光从折射率 n=1.5、厚度 d=10.0 cm的玻璃板上表面射入。已知真空中的光速为3.0×10 8m/s,则该单色光在玻璃板内传播的速度为_________m/s;对于所有可能的入射角,该单色光通过玻璃板所用时间 t的取值范围是__________s≤ t<_________s(不考虑反射)。
(2)均匀介质中质点 A、 B的平衡位置位于 x轴上,坐标分别为0和 x B=16 cm。某简谐横波沿 x轴正方向传播,波速为 v=20 cm/s,波长大于20 cm,振幅为 y=l cm,且传播时无衰减。 t=0时刻 A、 B偏离平衡位置的位移大小相等、方向相同,运动方向相反,此后每隔Δ t=0.6 s两者偏离平衡位置的位移大小相等、方向相同。已知在 t 1时刻( t 1>0),质点 A位于波峰。求:
(i)从 t 1时刻开始,质点 B最少要经过多长时间位于波峰;
(ii) t 1时刻质点 B偏离平衡位置的位移。
(1)如图,一定量的理想气体经历的两个不同过程,分别由体积-温度(V-t)图上的两条直线I和Ⅱ表示, V 1和 V 2分别为两直线与纵轴交点的纵坐标; t 0为它们的延长线与横轴交点的横坐标, t 0=-273.15°C; a为直线I上的一点。由图可知,气体在状态 a和 b的压强之比 p a/ p b=______;气体在状态 b和 c的压强之比 p a/ p c=_________。
(2)如图,一汽缸中由活塞封闭有一定量的理想气体,中间的隔板将气体分为 A、 B两部分;初始时, A、 B的体积均为 V,压强均等于大气压 p 0。隔板上装有压力传感器和控制装置,当隔板两边压强差超过0.5 p 0时隔板就会滑动,否则隔板停止运动。气体温度始终保持不变。向右缓慢推动活塞,使 B的体积减小为 V/2。
(i)求 A的体积和 B的压强;
(ⅱ)再使活塞向左缓慢回到初始位置,求此时 A的体积和 B的压强。
试题篮
()