优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题
初中数学

如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是(  )

A.6 B.5 C.4 D.3
  • 题型:未知
  • 难度:未知

下列各组数中,互为相反数的是(  )

A.2和﹣2 B.﹣2和
C.﹣2和 D.和2
  • 题型:未知
  • 难度:未知

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。
己知函数 (m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为,且,此时函数图象与x轴的交点分
别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。

  • 题型:未知
  • 难度:未知

如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、 BE和一段水平平台DE构成。已知天桥高度BC≈4.8米,引桥水平跨度AC=8米。

(1)求水平平台DE的长度;
(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比。
(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75

  • 题型:未知
  • 难度:未知

某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?

  • 题型:未知
  • 难度:未知

如图7,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(-2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y轴相交于点M.已知点C的坐标是(-4,0),点Q(x,y)是抛物线上任意一点.
(1)  求此抛物线的解析式及点M的坐标;
(2)  在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;
(3)  在抛物线上是否存在点Q,使得的面积是的面积的2倍?若存在,求
此时点Q的坐标.

  • 题型:未知
  • 难度:未知

为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和
排球,已知篮球和排球的单价比为3:2,单价和为160元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?

  • 题型:未知
  • 难度:未知

如图6,AB是⊙O的直径,BCAB于点B,连接OC交⊙O于   
E,弦ADOC
(1)求证:      ;
(2)求证:CD是⊙O的切线.



 

 

 

 
(图6)

  • 题型:未知
  • 难度:未知

某县为了了解“十、一”国庆期间该县常住居民的出游情况,有关部门随机调查了1600名常住居民,并根据调查结果绘制了如下统计图:

 
根据以上信息,解答下列各题:
(1)补全条形统计图,在扇形统计图中,直接填入出游主要目的是采集发展信息的人数的百分数;
(2)若该县常住居民共48万人,请估计该县常住居民中,利用“十、一”期间出游采集发展信息的人数;
(3)综合上述信息,用一句话谈谈你的感想.

  • 题型:未知
  • 难度:未知

如图5,在A岛周围25海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东 60 ° °方向,轮船继续前行20海里到达B处发现A岛在北偏东 45 ° 方向,该船若不改变航向继续前进,有无触礁的危险? (参考数据: 3 1 . 732

  • 题型:未知
  • 难度:未知

在△ABC和△DEF中,∠C=∠F=90°.有如下五张背面完全相同的纸牌①、②、③、④、⑤,其正面分别写有五个不同的等式,小民将这五张纸牌背面朝上洗匀后先随机摸出一张(不放回),再随机摸出一张.请结合以上条件,解答下列问题.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用①、②、③、④、⑤表示);
(2)用两次摸牌的结果和∠C=∠F=90°作为条件,求能满足△ABC和△DEF全等的概率.

  • 题型:未知
  • 难度:未知

给出下列命题:
命题1:直线与双曲线有一个交点是(1,1);
命题2:直线与双曲线有一个交点是(,4);
命题3:直线与双曲线有一个交点是(,9);
命题4:直线与双曲线有一个交点是(,16);
……………………………………………………
(1)请你阅读、观察上面命题,猜想出命题为正整数);
(2)请验证你猜想的命题是真命题.

  • 题型:未知
  • 难度:未知

我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB水平距离60米(BD=60米)处有一居民住宅楼,该居民住宅楼CD高15米,在该该住宅楼顶C处测得此危房屋顶A的仰角为30°,请你通过计算说明在实施定向爆破危房AB时,该居民住宅楼有无危险?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域,参考数据:)

  • 题型:未知
  • 难度:未知

(1)计算:
(2)先化简,再求值:,其中

  • 题型:未知
  • 难度:未知

初中数学试题