一辆货车从超市出发,向东走了2到达小刚家,继续向东走了3到达小红家,又向西走了9到达小英家,最后回到超市.
(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1,画出数轴,在数轴上表示出小刚家、小红家、小英家的位置;
(2)小英家距小刚家有多远?
(3)货车一共行驶了多少千米?
如图,数轴的单位长度为1.
(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是 、 ;
(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;
(3) 在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?
探索规律观察下面由※组成的图案和算式,解答问题
(1)请计算1+3+5+7+9+11=__________;
(2)请猜想1+3+5+7+9+…+19=__________;
(3)请猜想1+3+5+7+9+…+(2n﹣1)=__________;
(4)请用上述规律计算:21+23+25+…+99.
从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n |
S |
1 |
2=1×2 |
2 |
2+4=6=2×3 |
3 |
2+4+6=12=3×4 |
4 |
2+4+6+8=20=4×5 |
5 |
2+4+6+8+10=30=5×6 |
(1)若n=8时,则S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
如图,数轴上的A、B、C、D四点所表示的数分别为a、b、c、d,且O为原点.根据图中各点位置,判断|a-c|之值与下列选项中哪个不同( )
A.|a-b|+|c-b| B.|a|+|d|-|c+d|
C.|a-d|-|d-c| D.|a|+|d|-|c-d|
如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n﹣1)×(n﹣1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n |
2 |
3 |
4 |
5 |
6 |
使用的纸片张数 |
|
|
|
|
|
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.
①当n=2时,求S1:S2的值;
②用含n的代数式表示S2.
假设一家旅馆一共有30个房间,分别编以1-30号三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻数字必须使服务员很容易辨认是哪一个房间的钥匙,而使外人不容易猜到,现在有一种编码方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是___________号.
2015年9月30日杭州西湖景区某公园人流量为7万,每张门票80元,“十一黄金周”景区迎来了旅游高峰期,游客从各个省市来到杭州,该公园统计:十一黄金周期间,游客人数与前一天相比,增加和减少的情况如下表:(记增加为正).
日期 |
1号 |
2号 |
3号 |
4号 |
5号 |
6号 |
7号 |
人数(万人) |
+5 |
-1.2 |
+5.7 |
-0.6 |
+1.8 |
-2.9 |
-2.5 |
(1)10月2号该公园的人流量是多少万人?
(2)“十一黄金周”期间,人流量最多和最少分别出现在哪一天?
(3)该公园的所有门票收入均要缴纳百分之五的税,求“十一黄金周”期间,该公园的实际收入.
将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……依次规律,第6个图形有 个小圆。
数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将数对(﹣2,3)放入其中得到数m= ,再将数对(m,1)放入其中后,得到的数是 .
试题篮
()