2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.
(1)求这两个月参观人数的月平均增长率;
(2)按照这个增长率,预计6月份的参观人数是多少?
据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为 ,则可列方程 .
有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是
A. |
14 |
B. |
11 |
C. |
10 |
D. |
9 |
“杂交水稻之父” 袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
某工厂有甲、乙两个车间,甲车间生产 产品,乙车间生产 产品,去年两个车间生产产品的数量相同且全部售出.已知 产品的销售单价比 产品的销售单价高100元,1件 产品与1件 产品售价和为500元.
(1) 、 两种产品的销售单价分别是多少元?
(2)随着 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制 产品的生产车间.预计 产品在售价不变的情况下产量将在去年的基础上增加 ; 产品产量将在去年的基础上减少 ,但 产品的销售单价将提高 .则今年 、 两种产品全部售出后总销售额将在去年的基础上增加 .求 的值.
重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.
(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?
(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 ,这两种小面的总销售额在4月的基础上增加 .求 的值.
某服装店以每件30元的价格购进一批 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设 恤的销售单价提高 元.
(1)服装店希望一个月内销售该种 恤能获得利润3360元,并且尽可能减少库存,问 恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种 恤获得的利润最大?最大利润是多少元?
在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.
用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:
(1)填写上图中第四个图中y的值为 ,第五个图中y的值为 .
(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为 ,当 时,对应的y= .
(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?
为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对 , 两个玉米品种进行实验种植对比研究.去年 、 两个品种各种植了10亩.收获后 、 两个品种的售价均为 元/kg,且 品种的平均亩产量比A品种高100千克, 、 两个品种全部售出后总收入为 元.
(1)求 、 两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加 和 .由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨 ,而A品种的售价保持不变, 、 两个品种全部售出后总收入将增加 .求a的值.
2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).
列方程(组 解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 ,另外三面用 长的篱笆围成,其中一边开有一扇 宽的门(不包括篱笆).求这个茶园的长和宽.
今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
(2)若该景区仅有 , 两个景点,售票处出示的三种购票方式如下表所示:
购票方式 |
甲 |
乙 |
丙 |
可游玩景点 |
|
|
和 |
门票价格 |
100元 人 |
80元 人 |
160元 人 |
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
某水果商店销售一种进价为40元 千克的优质水果,若售价为50元 千克,则一个月可售出500千克;若售价在50元 千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元 千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
列方程(组 解应用题
端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:
小王:该水果的进价是每千克22元;
小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.
根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?
“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对 , 两个小麦品种进行种植对比实验研究.去年 , 两个品种各种植了10亩.收获后 , 两个品种的售价均为2.4元 ,且 的平均亩产量比 的平均亩产量高 , , 两个品种全部售出后总收入为21600元.
(1)请求出 , 两个品种去年平均亩产量分别是多少?
(2)今年,科技小组加大了小麦种植的科研力度,在 , 种植亩数不变的情况下,预计 , 两个品种平均亩产量将在去年的基础上分别增加 和 .由于 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨 ,而 品种的售价不变. , 两个品种全部售出后总收入将在去年的基础上增加 .求 的值.
试题篮
()